Elementary Number Theory: Primes, Congruences, and Secrets: A Computational Approach (Undergraduate Texts in Mathematics)
Stein, William
Used - Hardcover
Condition: Used - Good
Quantity: 1 available
Add to basketCondition: Used - Good
Quantity: 1 available
Add to basketBefriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present.
Seller Inventory # M00387855246-G
The systematic study of number theory was initiated around 300B.C. when Euclid proved that there are infinitely many prime numbers. At the same time, he also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over 1000 years later (around 972A.D.) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another 1000 years later (in 1976), Diffie and Hellman introduced the first ever public-key cryptosystem, which enabled two people to communicate secretly over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, public-key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles' resolution of Fermat's Last Theorem.
Today, pure and applied number theory is an exciting mix of simultaneously broad and deep theory, which is constantly informed and motivated by algorithms and explicit computation. Active research is underway that promises to resolve the congruent number problem, deepen our understanding into the structure of prime numbers, and both challenge and improve our ability to communicate securely. The goal of this book is to bring the reader closer to this world. Each chapter contains exercises, and throughout the text there are examples of calculations done using the powerful free open source mathematical software system Sage. The reader should know how to read and write mathematical proofs and must know the basics of groups, rings, and fields. Thus, the prerequisites for this book are more than the prerequisites for most elementary number theory books, while still being aimed at undergraduates.
William Stein is an Associate Professor of Mathematics at the University of Washington. He is also the author of Modular Forms, A Computational Approach (AMS 2007), and the lead developer of the open source software, Sage.
"About this title" may belong to another edition of this title.
1. Scope
For all orders via our store on the AbeBooks Marketplace, the following terms and conditions apply. Unless otherwise agreed, the inclusion of any terms and conditions of your own used by you is contradicted.
2. contracting party, conclusion of contract, correction options
The purchase contract is concluded with momox SE.
The subject of the contract is the sale of goods.
If an article is posted by us on AbeBooks, the activation of the offer page on AbeBooks is the binding offer to conclu...
Order quantity | 50 to 60 business days | 50 to 60 business days |
---|---|---|
First item | US$ 52.66 | US$ 64.37 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.