Explainable Artificial Intelligence for Autonomous Vehicles (Hardcover)
Kamal Malik
Sold by Grand Eagle Retail, Mason, OH, U.S.A.
AbeBooks Seller since October 12, 2005
New - Hardcover
Condition: New
Quantity: 1 available
Add to basketSold by Grand Eagle Retail, Mason, OH, U.S.A.
AbeBooks Seller since October 12, 2005
Condition: New
Quantity: 1 available
Add to basketHardcover. Explainable AI for Autonomous Vehicles: Concepts, Challenges, and Applications is a comprehensive guide to developing and applying explainable artificial intelligence (XAI) in the context of autonomous vehicles. It begins with an introduction to XAI and its importance in developing autonomous vehicles. It also provides an overview of the challenges and limitations of traditional black-box AI models and how XAI can help address these challenges by providing transparency and interpretability in the decision-making process of autonomous vehicles. The book then covers the state-of-the-art techniques and methods for XAI in autonomous vehicles, including model-agnostic approaches, post-hoc explanations, and local and global interpretability techniques. It also discusses the challenges and applications of XAI in autonomous vehicles, such as enhancing safety and reliability, improving user trust and acceptance, and enhancing overall system performance. Ethical and social considerations are also addressed in the book, such as the impact of XAI on user privacy and autonomy and the potential for bias and discrimination in XAI-based systems. Furthermore, the book provides insights into future directions and emerging trends in XAI for autonomous vehicles, such as integrating XAI with other advanced technologies like machine learning and blockchain and the potential for XAI to enable new applications and services in the autonomous vehicle industry. Overall, the book aims to provide a comprehensive understanding of XAI and its applications in autonomous vehicles to help readers develop effective XAI solutions that can enhance autonomous vehicle systems' safety, reliability, and performance while improving user trust and acceptance.This book:Discusses authentication mechanisms for camera access, encryption protocols for data protection, and access control measures for camera systems.Showcases challenges such as integration with existing systems, privacy, and security concerns while implementing explainable artificial intelligence in autonomous vehicles.Covers explainable artificial intelligence for resource management, optimization, adaptive control, and decision-making.Explains important topics such as vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, remote monitoring, and control.Emphasizes enhancing safety, reliability, overall system performance, and improving user trust in autonomous vehicles.The book is intended to provide researchers, engineers, and practitioners with a comprehensive understanding of XAI's key concepts, challenges, and applications in the context of autonomous vehicles. It is primarily written for senior undergraduate, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer science and engineering, information technology, and automotive engineering. The book "Explainable AI for Autonomous Vehicles: Concepts, Challenges, and Applications" is a comprehensive guide to developing and applying explainable artificial intelligence (XAI) in the context of autonomous vehicles. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Seller Inventory # 9781032655017
Explainable AI for Autonomous Vehicles: Concepts, Challenges, and Applications is a comprehensive guide to developing and applying explainable artificial intelligence (XAI) in the context of autonomous vehicles. It begins with an introduction to XAI and its importance in developing autonomous vehicles. It also provides an overview of the challenges and limitations of traditional black-box AI models and how XAI can help address these challenges by providing transparency and interpretability in the decision-making process of autonomous vehicles. The book then covers the state-of-the-art techniques and methods for XAI in autonomous vehicles, including model-agnostic approaches, post-hoc explanations, and local and global interpretability techniques. It also discusses the challenges and applications of XAI in autonomous vehicles, such as enhancing safety and reliability, improving user trust and acceptance, and enhancing overall system performance. Ethical and social considerations are also addressed in the book, such as the impact of XAI on user privacy and autonomy and the potential for bias and discrimination in XAI-based systems. Furthermore, the book provides insights into future directions and emerging trends in XAI for autonomous vehicles, such as integrating XAI with other advanced technologies like machine learning and blockchain and the potential for XAI to enable new applications and services in the autonomous vehicle industry. Overall, the book aims to provide a comprehensive understanding of XAI and its applications in autonomous vehicles to help readers develop effective XAI solutions that can enhance autonomous vehicle systems' safety, reliability, and performance while improving user trust and acceptance.
This book:
The book is intended to provide researchers, engineers, and practitioners with a comprehensive understanding of XAI's key concepts, challenges, and applications in the context of autonomous vehicles. It is primarily written for senior undergraduate, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer science and engineering, information technology, and automotive engineering.
Kamal Malik is currently working as a Professor in CSE in the School of Engineering and Technology at CTU Ludhiana, Punjab, India. She has published Scientific Research Publications in reputed International Journals, including SCI and Scopus indexed Journals.
Moolchand Sharma is currently an Assistant Professor in the Department of Computer Science and Engineering at the Maharaja Agrasen Institute of Technology, GGSIPU Delhi. He has published scientific research publications in reputed international journals and conferences, including SCI-indexed and Scopus-indexed journals.
Suman Deswal holds a Ph.D. from DCR University of Science & Technology, Murthal, India. She completed her M. Tech (CSE) from Kurukshetra University, Kurukshetra, India, and B. Tech (Computer Science & Engg.) from CR State College of Engg., Murthal, India, in 2009 and 1998, respectively. She has 18 years of teaching experience and works as a Professor in the Department of Computer Science and Engineering at DCR University of Science and Technology, Murthal, India. Her research area includes wireless networks, heterogeneous networks, distributed systems, Machine Learning and Bioinformatics.
Umesh Gupta is currently an Associate Professor at the School of Computer Science Engineering and Technology at Bennett University, Times of India Group, Greater Noida, Uttar Pradesh, India. He received a Doctor of Philosophy (Ph.D.) (Machine Learning) from the National Institute of Technology, Arunachal Pradesh, India. He has awarded a gold medal for his Master of Engineering (M.E.) from the National Institute of Technical Teachers Training and Research (NITTTR), Chandigarh, India, and Bachelor of Technology (B.Tech.) from Dr. APJ, Abdul Kalam Technical University, Lucknow, India. His research interests include SVM, ELM, RVFL, machine learning, and deep learning approaches.
Deevyankar Agarwal is a lecturer at the University of Technology and Applied Sciences in Muscat, Oman. He works in the Engineering Department, EEE Section (Computer Engineering),. He has 22 years of teaching and research experience. He is currently a doctoral researcher at the University of Valladolid, Spain.
Yahya Obaid Al Shamsi is working as the Dean of Engineering at the University of Technology and Applied Sciences in Muscat, Oman. He has 25 years of teaching and research experience. He got his PhD from the University of Bath, Department of Architecture and Civil Engineering, UK.
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it¿s described on the Abebooks web sites. If you¿ve changed
your mind about a book that you¿ve ordered, please use the Ask bookseller a question link to contact us
and we¿ll respond within 2 business days.
Books ship from California and Michigan.
Orders usually ship within 2 business days. All books within the US ship free of charge. Delivery is 4-14 business days anywhere in the United States.
Books ship from California and Michigan.
If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
Order quantity | 6 to 16 business days | 6 to 14 business days |
---|---|---|
First item | US$ 0.00 | US$ 0.00 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.