Exploring Optimization Algorithms in Machine Learning (Paperback)
Kinky
Sold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since June 29, 2022
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since June 29, 2022
Condition: New
Quantity: 1 available
Add to basketPaperback. Optimization algorithms in machine learning bridge theoretical foundations with practical applications, crucial for refining model performance. Techniques like gradient descent, stochastic gradient descent (SGD), and advanced methods such as Adam and RMSprop optimize model parameters to minimize error and enhance accuracy. Theoretical understanding encompasses concepts like convexity, convergence criteria, and adaptive learning rates, essential for algorithm selection based on dataset characteristics. In practice, implementing these algorithms involves tuning hyperparameters and assessing trade-offs between computational efficiency and model effectiveness across diverse datasets. Recent innovations, including meta-heuristic algorithms like genetic algorithms, further expand optimization capabilities for complex, non-linear problems. Mastering optimization algorithms empowers practitioners to navigate challenges in model training and deployment effectively, ensuring robust performance in real-world applications. This comprehensive understanding supports innovation in machine learning, driving advancements in various fields from healthcare to finance and beyond. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Seller Inventory # 9783384275837
"About this title" may belong to another edition of this title.
Orders can be returned within 30 days of receipt.
Please note that titles are dispatched from our US, Canadian or Australian warehouses. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 7-14 days.