A Formal Background to Mathematics 2a : A Critical Approach to Elementary Analysis
R. E. Edwards
Sold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since August 14, 2006
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since August 14, 2006
Condition: New
Quantity: 1 available
Add to basketDruck auf Anfrage Neuware - Printed after ordering - VII: Convergence of Sequences.- Hidden hypotheses.- VII.1 Sequences convergent inR.- VII.1.1 Definition of convergence to zero.- VII.1.2 Remarks.- VII.1.3 Definition of convergence in R.- VII.1.4 Remarks.- VII.1.5 Lemma.- VII.1.6 Theorem.- VII.1.7 Theorem.- VII.1.8 Theorem.- VII.1.9 Problems.- VII.1.10 Theorem.- VII.1.11 Theorem.- VII.1.12 Examples.- VII.1.13 More about converses.- VII.2 Infinite limits.- VII.2.1 The symbols - , - ; the extended real line.- VII.2.2 Definition of convergence to or to - .- VII.2.3 Theorem.- VII.2.4 Remarks.- VII.2.5 Example.- VII.2.6 Problems.- VII.3 Subsequences.- VII.3.1 Definition of subsequences.- VII.3.2 Theorem.- VII.3.3 Theorem.- VII.3.4 Examples.- VII.3.5 Lemma.- VII.3.6 Remark.- VII.4 The Monotone Convergence Principle again.- VII.4.1 The MCP.- VII.4.2 Example: the compound interest sequence.- VII.4.3 Preliminaries concering the number e.- VII.4.4 Problems.- VII.4.5 Theorem (Weierstrass-Bolzano).- VII.4.6 Kronecker¿s Theorem.- VII.5 Suprema and infima of sets of real numbers.- VII.5.1 Suprema.- VII.5.2 Infima.- VII.5.3 Example.- VII.5.4 Problems.- VII.5.5 Concerning formalities.- VII.5.6 Concerning notation and terminology.- VII.6 Exponential and logarithmic functions.- VII.6.1 Definition of exp.- VII.6.2 Theorem.- VII.6.3 Theorem.- VII.6.4 Remarks.- VII.6.5 Theorem.- VII.6.6 Theorem.- VII.6.7 An alternative approach.- VII.6.8 Concerning formalities.- VII.7 The General Principle of Convergence.- VII.7.1 Definition.- VII.7.2 The GCP.- VII.7.3 Discussion of convergence principles.- VII.7.4 Remarks concerning Cantor¿s construction of R.- VII.7.5 Concerning existential proofs.- VIII: Continuity and Limits of Functions.- and hidden hypotheses.- VIII.1 Continuous functions.- VIII.1.1 Definition of continuous functions.- VIII.1.2 Examples.- VIII.1.3 Theorem.- VIII.1.4 Problems.- VIII.2 Properties of continuous functions.- VIII.2.1 Theorem (Intermediate Value Theorem).- VIII.2.2 Comments on the preceding proof.- VIII.2.3 Corollary.- VIII.2.4 A geometrical illustration.- VIII.2.5 Theorem.- VIII.2.6 Problems.- VIII.2.7 Theorem.- VIII.2.8 Corollary.- VIII.2.9 Remark.- VIII.2.10 Problem.- VIII.2.11 Remark.- VIII.2.12 Problems.- VIII.3 General exponential, logarithmic and power functions.- VIII.3.1 Real powers of positive numbers.- VIII.3.2 The exponential and logarithmic functions with base a.- VIII.3.3 Power functions.- VIII.3.4 Problems.- VIII.4 Limit of a function at a point.- VIII.4.1 Preliminary definitions.- VIII.4.2 The full and punctured limits of a function at a point.- VIII.4.3 Theorem.- VIII.4.4 Some formalities and further discussion.- VIII.4.5 Theorem.- VIII.4.6 Limits of composite functions.- VIII.4.7 Other species of limits; one sided limits.- VIII.4.8 Problems.- VIII.5 Uniform continuity.- VIII.5.1 Preliminary discussion.- VIII.5.2 Definition.- VIII.5.3 Theorem.- VIII.5.4 Problems.- VIII.5.5 Remarks.- VIII.6 Convergence of sequences of functions.- VIII.6.1 Definition of pointwise convergence.- VIII.6.2 Examples.- VIII.6.3 Further discussion.- VIII.6.4 Definition of uniform convergence.- VIII.6.5 Theorem.- VIII.6.6 Examples.- VIII.6.7 Theorem.- VIII.6.8 Theorem.- VIII.6.9 Discussion of some formalities.- VIII.7 Polynomial approximation.- VIII.7.1 Preliminaries.- VIII.7.2 Theorem (Weierstrass).- VIII.7.3 Theorem (Bernstein).- VIII.7.4 Remarks.- VIII.8 Another approach to expa.- Preliminaries.- VIII.8.1 Existence of a solution.- VIII.8.2 Uniqueness of the solution.- VIII.8.3 Summary.- IX: Convergence of Series.- and hidden hypotheses.- IX.1 Series and their convergence.- IX.1.1 Definitions.- IX.1.2 Example.- IX.1.3 Theorem.- IX.1.4 Theorem.- IX.1.5 Theorem.- IX.1.6 Theorem.- IX.1.7 Examples.- IX.2 Absolute and conditional convergence.- IX.2.1 Definition of absolute and conditional convergence.- IX.2.2 Theorem.- IX.2.3 Theorem (General Comparison Test).- IX.2.4 Problems.- IX.2.5 Theorem (d¿Alembert¿s Ratio Test).- IX.2.6 Theorem (Cauc.
Seller Inventory # 9780387905136
"About this title" may belong to another edition of this title.
General Terms and Conditions and Customer Information / Privacy Policy
I. General Terms and Conditions
§ 1 Basic provisions
(1) The following terms and conditions apply to all contracts that you conclude with us as a provider (AHA-BUCH GmbH) via the Internet platforms AbeBooks and/or ZVAB. Unless otherwise agreed, the inclusion of any of your own terms and conditions used by you will be objected to
(2) A consumer within the meaning of the following regulations is any natural person who concludes...
We ship your order after we received them
for articles on hand latest 24 hours,
for articles with overnight supply latest 48 hours.
In case we need to order an article from our supplier our dispatch time depends on the reception date of the articles, but the articles will be shipped on the same day.
Our goal is to send the ordered articles in the fastest, but also most efficient and secure way to our customers.
| Order quantity | 30 to 40 business days | 7 to 14 business days | 
|---|---|---|
| First item | US$ 75.33 | US$ 86.93 | 
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.




