Functional Data Analysis with R
Ciprian M. Crainiceanu
Sold by PBShop.store UK, Fairford, GLOS, United Kingdom
AbeBooks Seller since June 11, 1999
New - Hardcover
Condition: New
Quantity: Over 20 available
Add to basketSold by PBShop.store UK, Fairford, GLOS, United Kingdom
AbeBooks Seller since June 11, 1999
Condition: New
Quantity: Over 20 available
Add to basketNew Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller Inventory # L1-9781032244716
Emerging technologies generate data sets of increased size and complexity that require new or updated statistical inferential methods and scalable, reproducible software. These data sets often involve measurements of a continuous underlying process, and benefit from a functional data perspective. Functional Data Analysis with R presents many ideas for handling functional data including dimension reduction techniques, smoothing, functional regression, structured decompositions of curves, and clustering. The idea is for the reader to be able to immediately reproduce the results in the book, implement these methods, and potentially design new methods and software that may be inspired by these approaches.
Features:
Functional Data Analysis with R is primarily aimed at undergraduate, master's and PhD students, as well as data scientists and researchers working on functional data analysis. The book can be read at different levels and combines state-of-the-art software, methods, and inference. It can be used for self-learning, teaching, and research, and will particularly appeal to anyone who is interested in practical methods for hands-on, problem-forward functional data analysis. The reader should have some basic coding experience, but expertise in R is not required.
Ciprian M. Crainiceanu is Professor of Biostatistics at Johns Hopkins University working on wearable and implantable technology (WIT), signal processing, and clinical neuroimaging. He has extensive experience in mixed effects modeling, semiparametric regression, and functional data analysis with application to data generated by emerging technologies.
Jeff Goldsmith is Associate Dean for Data Science and Associate Professor of Biostatistics at the Columbia University Mailman School of Public Health. His work in functional data analysis includes methodological and computational advances with applications in reaching kinematics, wearable devices, and neuroimaging.
Andrew Leroux is an Assistant Professor of Biostatistics and Informatics at the University of Colorado. His interests include the development of methodology in functional data analysis, particularly related to wearable technologies and intensive longitudinal data.
Erjia Cui is an Assistant Professor of Biostatistics at the University of Minnesota. His research interests include developing functional data analysis methods and semiparametric regression models with reproducible software, with applications in wearable devices, mobile health, and imaging.
"About this title" may belong to another edition of this title.
Returns Policy
We ask all customers to contact us for authorisation should they wish to return their order. Orders returned without authorisation may not be credited.
If you wish to return, please contact us within 14 days of receiving your order to obtain authorisation.
Returns requested beyond this time will not be authorised.
Our team will provide full instructions on how to return your order and once received our returns department will process your refund.
Please note the cost to return any...
Orders are shipped from our UK warehouse. Delivery thereafter is between 4 and 14 business days. Please contact us if you have any queries about our services or products.