Fundamentals of Solid State Engineering, 2nd Edition, provides a multi-disciplinary introduction to Solid State Engineering, combining concepts from physics, chemistry, electrical engineering, materials science and mechanical engineering. Basic physics concepts are introduced, followed by a thorough treatment of the technology for solid state engineering. Topics include compound semiconductor bulk and epitaxial thin films growth techniques, current semiconductor device processing and nano-fabrication technologies. Examples of semiconductor devices and a description of their theory of operation are then discussed, including transistors, semiconductor lasers and photodetectors.
Revised throughout, this second edition includes new chapters on the reciprocal lattice, optical properties of semiconductors, semiconductor heterostructures, semiconductor characterization techniques, and an introduction to lasers. Additions and improvements have been made to the material on photodetectors and quantum mechanics as well as to the problem sections.
Fundamentals of Solid State Engineering, 3rd Edition, provides a multi-disciplinary introduction to solid state engineering, combining concepts from physics, chemistry, electrical engineering, materials science and mechanical engineering.
Revised throughout, this third edition includes new topics such as electron-electron and electron-phonon interactions, in addition to the Kane effective mass method. A chapter devoted to quantum mechanics has been expanded to cover topics such as the harmonic oscillator, the hydrogen atom, the quantum mechanical description of angular momentum and the origin of spin. This textbook also features an improved transport theory description, which now goes beyond Drude theory, discussing the Boltzmann approach.
Introducing students to the rigorous quantum mechanical way of thinking about and formulating transport processes, this textbook presents the basic physics concepts and thorough treatment of semiconductor characterization technology, designed for solid state engineers.