Handbook of Trustworthy Federated Learning (Springer Optimization and Its Applications, 213)
Sold by Best Price, Torrance, CA, U.S.A.
AbeBooks Seller since August 30, 2024
New - Hardcover
Condition: New
Quantity: 1 available
Add to basketSold by Best Price, Torrance, CA, U.S.A.
AbeBooks Seller since August 30, 2024
Condition: New
Quantity: 1 available
Add to basketSUPER FAST SHIPPING.
Seller Inventory # 9783031589225
This handbook aims to serve as a one-stop, reliable resource, including curated surveys and expository contributions on federated learning. It covers a comprehensive range of topics, providing the reader with technical and non-technical fundamentals, applications, and extensive details of various topics. The readership spans from researchers and academics to practitioners who are deeply engaged or are starting to venture into the realms of trustworthy federated learning. First introduced in 2016, federated learning allows devices to collaboratively learn a shared model while keeping raw data localized, thus promising to protect data privacy. Since its introduction, federated learning has undergone several evolutions. Most importantly, its evolution is in response to the growing recognition that its promise of collaborative learning is inseparable from the imperatives of privacy preservation and model security.
The resource is divided into four parts. Part 1 (Security and Privacy) explores the robust defense mechanisms against targeted attacks and addresses fairness concerns, providing a multifaceted foundation for securing Federated Learning systems against evolving threats. Part 2 (Bilevel Optimization) unravels the intricacies of optimizing performance in federated settings. Part 3 (Graph and Large Language Models) addresses the challenges in training Graph Neural Networks and ensuring privacy in Federated Learning of natural language models. Part 4 (Edge Intelligence and Applications) demonstrates how Federated Learning can empower mobile applications and preserve privacy with synthetic data.
My T. Thai is a Research Foundation Professor of Computer & Information Sciences & Engineering and Associate Director of UF Nelms Institute for the Connected World at the University of Florida, USA. Dr. Thai has extensive expertise in Trustworthy AI, Security and Privacy, Network Science, and Optimization. She has published 7 books and over 300+ papers in leading academic journals and conferences with severable best papers awards from the IEEE, ACM, and AAAI. The two latest ones are AAAI 2023 Distinguished Papers Award and 2023 ACM Web Science Trust Test-of-Time Award. Dr. Thai is the recipient of various awards, including DTRA Young Investigator Award and NSF CAREER Award. In addition, Dr. Thai is TPC-chairs and general chairs of many IEEE international conferences and on the editorial board of several journals. She is currently the Editor-in-Chief of the Journal of Combinatorial Optimization (JOCO), the IET Blockchain journal, and a book series editor of Springer Optimization and its Application. Dr. Thai is a Fellow of IEEE.
Hai N. Phan is an Associate Professor at the NJIT. Dr. Phan’s topic of interest mainly concerns privacy and security, machine learning, health informatics, social network analysis, and spatiotemporal data mining. Dr. Phan received his Ph.D. in Computer Science from the University of Montpellier 2 in October 2013. Dr. Phan has established a strong expertise in the field, i.e., privacy and security, ML, and health informatics, with over 47 publications. Many of them were published at leading venues, including ICML, ECML, AAAI, IJCAI, ACM SigSpatial, ACM Multimedia, etc., with several best papers, i.e., IEEE ICDM’17, Springer CSoNet’19, Springer CSoNet’18, ACM in preserving scalable DP and LDP in deep learning, such as auto-encoders, CNNs, continual and adversarial learning, network embedding, language modeling, certified robustness against model attacks, representation learning, and FL.
Bhavani Thuraisingham is the Founders Chair Professor of Computer Science and the Executive Director of the Cyber Security Research and Education Institute at the University of Texas at Dallas. Dr. Thuraisingham has 35+ years of work experiences in the commercial industry (Honeywell), Federally Funded Research and Development Center (MITRE), Government (NSF) and Academia. She has conducted research in cyber security for thirty years and specializes in applying data analytics for cyber security. Her work has resulted in over 100 keynote addresses, 120 journal papers, 300 conference papers, 15 books, and 8 patents. She is a Fellow of ACM, IEEE, AAAS, NAI, and IMA.
"About this title" may belong to another edition of this title.
When you see an item on our listing, it means we have it available in one of our warehouses right here right now, ready for same day or next day processing of your order. Over 50+ Million books in stock & ready to ship same day. Customer Service is a top priority for us, we want every customer to be 100% satisfied. We offer the world's largest selection of books, music and video. Maintaining an accurate inventory of more than 50+ Million items, we are able to ship your order the same day it is r...
SUPER FAST SHIPPING!
Order quantity | 1 to 3 business days | 1 to 3 business days |
---|---|---|
First item | US$ 8.98 | US$ 19.98 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.