Hands-On GPU Programming with Python and CUDA: Explore high-performance parallel computing with CUDA (English Edition)
Tuomanen, Dr. Brian
Used - Soft cover
Quantity: 1 available
Add to basketQuantity: 1 available
Add to basketAbout this Item
Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Seller Inventory # M01788993918-V
Bibliographic Details
Title: Hands-On GPU Programming with Python and ...
Publisher: Packt Publishing
Publication Date: 2018
Binding: Soft cover
Condition: very good
About this title
Build GPU-accelerated high performing applications with Python 2.7, CUDA 9, and open source libraries such as PyCUDA and scikit-cuda. We recommend the use of Python 2.7 as this version has stable support across all libraries used in this book.
GPU programming is the technique of offloading intensive tasks running on the CPU for faster computing. Hands-On GPU Programming with Python and CUDA will help you discover ways to develop high performing Python apps combining the power of Python and CUDA.
This book will help you hit the ground running-you'll start by learning how to apply Amdahl's law, use a code profiler to identify bottlenecks in your Python code, and set up a GPU programming environment. You'll then see how to query a GPU's features and copy arrays of data to and from its memory. As you make your way through the book, you'll run your code directly on the GPU and write full blown GPU kernels and device functions in CUDA C. You'll even get to grips with profiling GPU code and fully test and debug your code using Nsight IDE. Furthermore, the book covers some well-known NVIDIA libraries such as cuFFT and cuBLAS.
With a solid background in place, you'll be able to develop your very own GPU-based deep neural network from scratch, and explore advanced topics such as warp shuffling, dynamic parallelism, and PTX assembly. Finally, you'll touch up on topics and applications like AI, graphics, and blockchain.
By the end of this book, you'll be confident in solving problems related to data science and high-performance computing with GPU programming.
This book is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. Familiarity with mathematics and physics concepts along with some experience with Python and any C-based programming language will be helpful.
Dr. Brian Tuomanen has been working with CUDA and General-Purpose GPU Programming since 2014. He received his Bachelor of Science in Electrical Engineering from the University of Washington in Seattle, and briefly worked as a Software Engineer before switching to Mathematics for Graduate School. He completed his Ph.D. in Mathematics at the University of Missouri in Columbia, where he first encountered GPU programming as a means for studying scientific problems. Dr. Tuomanen has spoken at the US Army Research Lab about General Purpose GPU programming, and has recently lead GPU integration and development at a Maryland based start-up company. He currently lives and works in the Seattle area.
"About this title" may belong to another edition of this title.
Store Description
1. Scope
For all orders via our store on the AbeBooks Marketplace, the following terms and conditions apply. Unless otherwise agreed, the inclusion of any terms and conditions of your own used by you is contradicted.
2. contracting party, conclusion of contract, correction options
The purchase contract is concluded with momox SE.
The subject of the contract is the sale of goods.
If an article is posted by us on AbeBooks, the activation of the offer page on AbeBooks is the binding offer to conclu...
More InformationPayment Methods
accepted by seller