Heterogenous Computational Intelligence in Internet of Things
Pawan Singh
Sold by PBShop.store US, Wood Dale, IL, U.S.A.
AbeBooks Seller since April 7, 2005
New - Hardcover
Condition: New
Quantity: Over 20 available
Add to basketSold by PBShop.store US, Wood Dale, IL, U.S.A.
AbeBooks Seller since April 7, 2005
Condition: New
Quantity: Over 20 available
Add to basketNew Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller Inventory # L1-9781032426372
We have seen a sharp increase in the development of data transfer techniques in the networking industry over the past few years. We can see that the photos are assisting clinicians in detecting infection in patients even in the current COVID-19 pandemic condition. With the aid of ML/AI, medical imaging, such as lung X-rays for COVID-19 infection, is crucial in the early detection of many diseases. We also learned that in the COVID-19 scenario, both wired and wireless networking are improved for data transfer but have network congestion. An intriguing concept that has the ability to reduce spectrum congestion and continuously offer new network services is providing wireless network virtualization. The degree of virtualization and resource sharing varies between the paradigms. Each paradigm has both technical and non-technical issues that need to be handled before wireless virtualization becomes a common technology. For wireless network virtualization to be successful, these issues need careful design and evaluation. Future wireless network architecture must adhere to a number of Quality of Service (QoS) requirements. Virtualization has been extended to wireless networks as well as conventional ones. By enabling multi-tenancy and tailored services with a wider range of carrier frequencies, it improves efficiency and utilization. In the IoT environment, wireless users are heterogeneous, and the network state is dynamic, making network control problems extremely difficult to solve as dimensionality and computational complexity keep rising quickly. Deep Reinforcement Learning (DRL) has been developed by the use of Deep Neural Networks (DNNs) as a potential approach to solve high-dimensional and continuous control issues effectively.
Deep Reinforcement Learning techniques provide great potential in IoT, edge and SDN scenarios and are used in heterogeneous networks for IoT-based management on the QoS required by each Software Defined Network (SDN) service. While DRL has shown great potential to solve emerging problems in complex wireless network virtualization, there are still domain-specific challenges that require further study, including the design of adequate DNN architectures with 5G network optimization issues, resource discovery and allocation, developing intelligent mechanisms that allow the automated and dynamic management of the virtual communications established in the SDNs which is considered as research perspective.
Dr. Pawan Singh is an Associate Professor in the Department of Computer Science & Engineering, Amity School of Engineering and Technology, Amity University Uttar Pradesh, Lucknow, India. He has completed Ph.D. degree in Computer Science from Magadh University, Gaya. He has more than fifteen years of experience in research and teaching. He has published several research articles in SCI/SCIE/Scopus journals and conferences of high repute. He has also authored various books. He has various National and international patents and some are granted. He holds contributions in IEEE, Elsevier, etc. repute journals. He is also a reviewer in various reputed journals. His current areas of interest include Computer Networks, Parallel Processing and Internet of Things.
Mr. Prateek Singhal is an Assistant Professor in the Department of Computer Engineering & Applications at GLA University, Mathura, Uttar Pradesh. He is pursuing a Ph.D. degree in Medical Imaging from the Maharishi University of Information Technology, Lucknow, India. He has more than four years of experience in research and teaching. He has published several research articles in SCI/SCIE/Scopus journals and conferences of high repute. He has also authored a book on Cloud Computing. He has various National and international patents and some are granted. He holds contributions to IEEE, Elsevier, etc. reputed journals. He is on the team of the research advisory member in his present institute. His current areas of interest include Image Processing, Medical Imaging, Human Computation Interface, Neuro-Computing, Internet of Things.
Dr. Pramod Kumar Mishra is working as a Head and Professor in the Department of Computer Science & Engineering at Banaras Hindu University, Varanasi. He has completed Ph.D. degree on A study of efficient shortest path algorithms for serial and parallel computers from APS University, Rewa, India. He has more than Thirty years of experience in research and teaching. He has received various Awards and fellowships from the good repute organizations. He has also received various grants from national and international government bodies/Agency. He has published several research articles in SCI/SCIE/Scopus journals and conferences of high repute. He has also authored a book on Cloud Computing. He has various National and international patents and some are granted. He holds contributions in IEEE, Elsevier, etc. reputed journal. He is in the team of the research advisory member in his present institute. His current areas of interest include AI and Machine Learning Algorithms, Data Analytics, Parallel Computing, High-Performance Clusters, Algorithm Engineering (AE), High-Performance AE, Parallel Computation, and Computational complexity.
Dr. Avimanyou Vatsa is working as an assistant professor in the department of computer science, Fairleigh Dickinson University – Teaneck. He also worked as an assistant professor at West Texas A&M University, a teaching & research assistant at the University of Missouri, Columbia, and an assistant professor for more than ten years in several engineering colleges and a university in India. Also, he worked as a software engineer in the industry. He always motivates and inspires students with a statement: “Nothing is impossible, just put your hard work and sincere effort persistently toward your goal.
"About this title" may belong to another edition of this title.
Returns Policy
We ask all customers to contact us for authorisation should they wish to return their order. Orders returned without authorisation may not be credited.
If you wish to return, please contact us within 14 days of receiving your order to obtain authorisation.
Returns requested beyond this time will not be authorised.
Our team will provide full instructions on how to return your order and once received our returns department will process your refund.
Please note the cost to return any...
Books are shipped from UK warehouse. Delivery thereafter is between 4 and 14 business days dependant upon your location - please do contact us with any queries you may have.
Order quantity | 7 to 14 business days | 7 to 14 business days |
---|---|---|
First item | US$ 0.00 | US$ 0.00 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.