Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra (Undergraduate Texts in Mathematics)
Cox, David A, Little, John
Used - Hardcover
Quantity: 1 available
Add to basketQuantity: 1 available
Add to basketAbout this Item
Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Seller Inventory # M03319167200-V
Bibliographic Details
Title: Ideals, Varieties, and Algorithms: An ...
Publisher: Springer
Publication Date: 2015
Binding: Hardcover
Condition: very good
Edition: 4th Edition
About this title
This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry―the elimination theorem, the extension theorem, the closure theorem and the Nullstellensatz―this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new Chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D).
The book may serve as a first or second course in undergraduate abstract algebra and with some supplementation perhaps, for beginning graduate level courses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of Maple™, Mathematica® and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used.
Readers who are teaching from Ideals, Varieties, and Algorithms, or are studying the book on their own, may obtain a copy of the solutions manual by sending an email to jlittle@holycross.edu.
From the reviews of previous editions:
“...The book gives an introduction to Buchberger’s algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations and elimination theory. ...The book is well-written. ...The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry.”
―Peter Schenzel, zbMATH, 2007
“I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry.”
―The American Mathematical Monthly
David A. Cox is currently Professor of Mathematics at Amherst College. John Little is currently Professor of Mathematics at College of the Holy Cross. Donal O'Shea is currently President and Professor of Mathematics at New College of Florida.
"About this title" may belong to another edition of this title.
Store Description
1. Scope
For all orders via our store on the AbeBooks Marketplace, the following terms and conditions apply. Unless otherwise agreed, the inclusion of any terms and conditions of your own used by you is contradicted.
2. contracting party, conclusion of contract, correction options
The purchase contract is concluded with momox SE.
The subject of the contract is the sale of goods.
If an article is posted by us on AbeBooks, the activation of the offer page on AbeBooks is the binding offer to conclu...
More InformationPayment Methods
accepted by seller