Synopsis
Pulse-coupled neural networks represent a new and exciting advance in image processing research. When exposed to grey scale or colour images they produce a series of binary pulse images which allow the content of the image to be assessed much more accurately than from the original. In this volume Thomas Lindblad and Jason Kinser provide a much needed introduction to the topic of PCNNs. They review the theoretical foundations, and then look at a number of image processing applications including segmentation, edge extraction, texture extraction, object identification, object isolation, motion processing, foveation, noise suppression and image fusion. They also look at the PCNNs ability to process logical arguments and at how to implement it in specialised hardware. It will be of particular interest to researchers and practitioners working in image processing, especially those involved with medical, military or industrial applications. It will also be of interest to graduate-level students.
From the Back Cover
This is the first book to explain and demonstrate the tremendous ability of Pulse-Coupled Neural Networks (PCNNs) when applied to the field of image processing. PCNNs and their derivatives are biologically inspired models that are powerful tools for extracting texture, segments, and edges from images. As these attributes form the foundations of most image processing tasks, the use of PCNNs facilitates traditional tasks such as recognition, foveation, and image fusion. PCNN technology has also paved the way for new image processing techniques such as object isolation, spiral image fusion, image signatures, and content-based image searches. This volume contains examples of several image processing applications, as well as a review of hardware implementations.
"About this title" may belong to another edition of this title.