Information Theory in Computer Vision and Pattern Recognition
Francisco Escolano Ruiz
Sold by buchversandmimpf2000, Emtmannsberg, BAYE, Germany
AbeBooks Seller since January 23, 2017
New - Hardcover
Condition: New
Quantity: 2 available
Add to basketSold by buchversandmimpf2000, Emtmannsberg, BAYE, Germany
AbeBooks Seller since January 23, 2017
Condition: New
Quantity: 2 available
Add to basketNeuware -Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information¿), principles (maximum entropy, minimax entropy¿) and theories (rate distortion theory, method of types¿).This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to across-fertilization of both areas.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 384 pp. Englisch.
Seller Inventory # 9781848822962
Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information…), principles (maximum entropy, minimax entropy…) and theories (rate distortion theory, method of types…).
This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to across-fertilization of both areas.
Information Theory (IT) can be highly effective for formulating and designing algorithmic solutions to many problems in Computer Vision and Pattern Recognition (CVPR).
This text introduces and explores the measures, principles, theories, and entropy estimators from IT underlying modern CVPR algorithms, providing comprehensive coverage of the subject through an incremental complexity approach. The authors formulate the main CVPR problems and present the most representative algorithms. In addition, they highlight interesting connections between elements of IT when applied to different problems, leading to the development of a basic research roadmap (the ITinCVPR tube). The result is a novel tool, unique in its conception, both for CVPR and IT researchers, which is intended to contribute as much as possible to a cross-fertilization of both areas.
Topics and features:
A must-read not only for researchers in CVPR-IT, but also for the wider CVPR community, this text is also suitable for a one semester IT-based coursein CVPR.
---
Information theory has found widespread use in modern computer vision, and provides one of the most powerful current paradigms in the field. To date, though, there has been no text that focusses on the needs of the vision or pattern recognition practitioner who wishes to find a concise reference to the subject. This text elegantly fills this gap in the literature. The approach is rigorous, yet lucid and furnished with copious real world examples.
Professor Edwin Hancock,
Head CVPR Group and Chair Department Research Committee,
Department of Computer Science, University of York
---
Far from being a shotgun wedding or arranged marriage between information theory and image analysis, this book succeeds at explicating just why these two areas are made for each other.
Associate Professor Anand Rangarajan,
Department of Computer & Information Science and Engineering,
University of Florida, Gainesville
"About this title" may belong to another edition of this title.
Widerrufsbelehrung/ Muster-Widerrufsformular/
Allgemeine Geschäftsbedingungen und Kundeninformationen/ Datenschutzerklärung
Widerrufsrecht für Verbraucher
(Verbraucher ist jede natürliche Person, die ein Rechtsgeschäft zu Zwecken abschließt, die überwiegend weder ihrer gewerblichen noch ihrer selbstständigen beruflichen Tätigkeit zugerechnet werden können.)
Widerrufsbelehrung
Widerrufsrecht
Sie haben das Recht, binnen 14 Tagen ohne Angabe von Gründen diesen Vertrag zu widerrufen.
Die Widerrufsfr...
Soweit in der Artikelbeschreibung keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Werktagen nach Vertragsschluss, bei Vorauszahlung erst nach Eingang des vollständigen Kaufpreises und der Versandkosten. Alle Preise inkl. MwSt.
| Order quantity | 60 to 60 business days | 60 to 60 business days |
|---|---|---|
| First item | US$ 69.61 | US$ 87.01 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.