The theory of elliptic curves and modular forms provides a fruitful meeting ground for such diverse areas as number theory, complex analysis, algebraic geometry, and representation theory. This book starts out with a problem from elementary number theory and proceeds to lead its reader into the modern theory, covering such topics as the Hasse-Weil L-function and the conjecture of Birch and Swinnerton-Dyer. The second edition of this text includes an updated bibliography indicating the latest, dramatic changes in the direction of proving the Birch and Swinnerton conjecture. It also discusses the current state of knowledge of elliptic curves.
Neal Koblitz is a Professor of Mathematics at the University of Washington in the Department of Mathematics. He is also an adjunct professor with the Centre for Applied Cryptographic Research at the University of Waterloo. He is the creator of hyperelliptic curve cryptography and the independent co-creator of elliptic curve cryptography. Professor Koblitz received his undergraduate degree from Harvard University, where he was a Putnam Fellow, in 1969. He received his Ph.D. from Princeton University in 1974 under the direction of Nickolas Katz.