Knowledge Graph-Based Methods for Automated Driving (Paperback)
Rajesh Kumar Dhanaraj
Sold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since June 29, 2022
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since June 29, 2022
Condition: New
Quantity: 1 available
Add to basketPaperback. The global race to develop and deploy automated vehicles is still hindered by significant challenges, with the related complexities requiring multidisciplinary research approaches.Knowledge Graph-Based Methods for Automated Driving offers sought-after, specialized know-how for a wide range of readers both in academia and industry on the use of graphs as knowledge representation techniques which, compared to other relational models, provide a number of advantages for data-driven applications like automated driving tasks. The machine learning pipeline presented in this volume incorporates a variety of auxiliary information, including logic rules, ontology-informed workflows, simulation outcomes, differential equations, and human input, with the resulting operational framework being more reliable, secure, efficient as well as sustainable.Case studies and other practical discussions exemplify these methods promising and exciting prospects for the maturation of scalable solutions with potential to transform transport and logistics worldwide. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Seller Inventory # 9780443300400
The global race to develop and deploy automated vehicles is still hindered by significant challenges, with the related complexities requiring multidisciplinary research approaches.
Knowledge Graph-Based Methods for Automated Driving offers sought-after, specialized know-how for a wide range of readers both in academia and industry on the use of graphs as knowledge representation techniques which, compared to other relational models, provide a number of advantages for data-driven applications like automated driving tasks. The machine learning pipeline presented in this volume incorporates a variety of auxiliary information, including logic rules, ontology-informed workflows, simulation outcomes, differential equations, and human input, with the resulting operational framework being more reliable, secure, efficient as well as sustainable.
Case studies and other practical discussions exemplify these methods’ promising and exciting prospects for the maturation of scalable solutions with potential to transform transport and logistics worldwide.
Dr. Nalini holds a PhD in Electronics and Communication Engineering from Sri Chandrasekarendra Saraswathi Viswa Maha Vidyalaya, Kanchipuram, India. Her research and publication interests include Artificial Intelligence, biomedical engineering, wireless sensor networks, and Internet of Things. She holds two patents in India and has received a grant to submit another application through the AICTE Quality Improvement Schemes supported by the Gvt. of India.
Dr. Malathy holds a PhD in Information and Communication Engineering from Anna University, Chennai, India. Her research areas include wireless sensor networks, Internet of Things, and applied machine learning. She is a life member of the Indian Society for Technical Education (ISTE) and the International Association of Engineers (IAENG). She is an active author/editor for Springer, CRC Press, and Elsevier. She is also a reviewer for Wireless Networks (Springer) and on the editorial board at many international conferences.
"About this title" may belong to another edition of this title.
Orders can be returned within 30 days of receipt.
Please note that titles are dispatched from our US, Canadian or Australian warehouses. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 7-14 days.
Order quantity | 7 to 60 business days | 7 to 14 business days |
---|---|---|
First item | US$ 49.98 | US$ 49.98 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.