Linear and Integer Programming vs Linear Integration and Counting
Jean B. Lasserre
Sold by Books Puddle, New York, NY, U.S.A.
AbeBooks Seller since November 22, 2018
New - Soft cover
Condition: New
Quantity: 4 available
Add to basketSold by Books Puddle, New York, NY, U.S.A.
AbeBooks Seller since November 22, 2018
Condition: New
Quantity: 4 available
Add to basketThis book analyzes and compares four closely related problems, namely linear programming, integer programming, linear integration, and linear summation (or counting). The book provides some new insights on duality concepts for integer programs.
In this book the author analyzes and compares four closely related problems, namely linear programming, integer programming, linear integration, linear summation (or counting). The focus is on duality and the approach is rather novel as it puts integer programming in perspective with three associated problems, and permits one to define discrete analogues of well-known continuous duality concepts, and the rationale behind them. Also, the approach highlights the difference between the discrete and continuous cases. Central in the analysis are the continuous and discrete Brion and Vergne's formulae for linear integration and counting. This approach provides some new insights on duality concepts for integer programs, and also permits to retrieve and shed new light on some well-known results. For instance, Gomory relaxations and the abstract superadditive dual of integer programs are re-interpreted in this algebraic approach.
This book will serve graduate students and researchers in applied mathematics, optimization, operations research and computer science. Due to the substantial practical importance of some presented problems, researchers in other areas will also find this book useful.
"About this title" may belong to another edition of this title.
We accept return for those books which are received damaged. Though we take appropriate care in packing to avoid such situation.