William J. Palm has revised Modeling, Analysis, and Control of Dynamic Systems, an introduction to dynamic systems and control. The first six chapters cover modeling and analysis techniques, and treat mechanical, electrical, fluid, and thermal systems. Transfer functions, frequency response, and Laplace-transform solution of differential equations are also covered. The last five chapters cover the fundamentals and applications of control systems, classical methods for control system design, based on the root locus and frequency response plots; and modern design techniques based on state space methods. Optional sections at the end of each chapter introduce Matlab commands and applications relevant to the chapter's topics. Four appendices summarize Fourier series, Mason's rule, the Routh array, units, and physical constants.
An integrated presentation of both classical and modern methods of systems modeling, response and control. Includes coverage of digital control systems. Details sample data systems and digital control. Provides numerical methods for the solution of differential equations. Gives in-depth information on the modeling of physical systems and central hardware.