Machine Learning for Imbalanced Data
Kumar Abhishek, Dr. Mounir Abdelaziz
Sold by Rarewaves USA, OSWEGO, IL, U.S.A.
AbeBooks Seller since June 10, 2025
New - Soft cover
Condition: New
Quantity: Over 20 available
Add to basketSold by Rarewaves USA, OSWEGO, IL, U.S.A.
AbeBooks Seller since June 10, 2025
Condition: New
Quantity: Over 20 available
Add to basketThis book will help you master the art of predicting outcomes when datasets are imbalanced and where the most important class is under-represented. You'll learn the skills you need to overcome challenges when dealing with imbalanced datasets for both traditional machine learning and deep learning models.
Seller Inventory # LU-9781801070836
Take your machine learning expertise to the next level with this essential guide, utilizing libraries like imbalanced-learn, PyTorch, scikit-learn, pandas, and NumPy to maximize model performance and tackle imbalanced data
As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance.
Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods.
As you progress, you’ll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that’ll demonstrate the practical implementation of each technique.
By the end of this book, you’ll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.
This book is for machine learning practitioners who want to effectively address the challenges of imbalanced datasets in their projects. Data scientists, machine learning engineers/scientists, research scientists/engineers, and data scientists/engineers will find this book helpful. Though complete beginners are welcome to read this book, some familiarity with core machine learning concepts will help readers maximize the benefits and insights gained from this comprehensive resource.
Kumar Abhishek is a seasoned Senior Machine Learning Engineer at Expedia Group, US, specializing in risk analysis and fraud detection for Expedia brands. With over a decade of experience at companies such as Microsoft, Amazon, and a Bay Area startup, Kumar holds an MS in Computer Science from the University of Florida.
Dr. Mounir Abdelaziz is a deep learning researcher specializing in computer vision applications. He holds a Ph.D. in computer science and technology from Central South University, China. During his Ph.D. journey, he developed innovative algorithms to address practical computer vision challenges. He has also authored numerous research articles in the field of few-shot learning for image classification.
"About this title" may belong to another edition of this title.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Canada (due to the Canada Post strike)
Afghanistan
Bhutan
Brazil
Brunei Darussalam
Channel Islands
Chile
Israel
Lao
Mexico
Russian Federation
Saudi Arabia
South Africa
Yemen
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.
Order quantity | 9 to 12 business days | 9 to 12 business days |
---|---|---|
First item | US$ 0.00 | US$ 0.00 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.