Machine Learning for Multimedia Content Analysis
Gong, Yihong; Xu, Wei
Sold by GreatBookPrices, Columbia, MD, U.S.A.
AbeBooks Seller since April 6, 2009
Used - Soft cover
Condition: Used - As new
Quantity: 15 available
Add to basketSold by GreatBookPrices, Columbia, MD, U.S.A.
AbeBooks Seller since April 6, 2009
Condition: Used - As new
Quantity: 15 available
Add to basketUnread book in perfect condition.
Seller Inventory # 12688412
Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, isolated data items. This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).
Challenges in complexity and variability of multimedia data have led to revolutions in machine learning techniques. Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, isolated data items. A number of pixels in a digital image collectively conveys certain visual content to viewers. A TV video program consists of both audio and image streams that unfold the underlying story. To recognize the visual content of a digital image, or to understand the underlying story of a video program, we may need to label sets of pixels or groups of image and audio frames jointly.
Machine Learning for Multimedia Content Analysis introduces machine learning techniques that are particularly powerful and effective for modeling spatial, temporal structures of multimedia data and for accomplishing common tasks of multimedia content analysis. This book systematically covers these techniques in an intuitive fashion and demonstrates their applications through case studies. This volume uses a large number of figures to illustrate and visualize complex concepts, and provides insights into the characteristics of many algorithms through examinations of their loss functions and straightforward comparisons.
Machine Learning for Multimedia Content Analysis is designed for an academic and professional audience. Researchers will find this book an invaluable tool for applying machine learning techniques to multimedia content analysis. This volume is also suitable for practitioners in industry.
"About this title" may belong to another edition of this title.
Company Name: GreatBookPrices
Legal Entity: Expert Trading, LLC
Address: 9220 Rumsey Road, Ste 101, Columbia MD 21046
Email address: CustomerService@SuperBookDeals.com
Phone number: 410-964-0026
consumer complaints can be addressed to address above
Registration #: 52-1713923
Authorized representative: Danielle Hainsey
Internal processing of your order will take about 1-2 business days. Please allow an additional 4-14 business days for Media Mail delivery. We have multiple ship-from locations - MD,IL,NJ,UK,IN,NV,TN & GA
Order quantity | 8 to 14 business days | 5 to 14 business days |
---|---|---|
First item | US$ 2.64 | US$ 2.64 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.