This self-contained work introduces the main ideas and fundamental methods of analysis at the advanced undergraduate/graduate level. It provides the historical context out of which these concepts emerged, and aims to develop connections between analysis and other mathematical disciplines (e.g., topology and geometry) as well as physics and engineering. A rigorous exposition, numerous examples, beautiful illustrations, good problems, comprehensive bibliography, and index are some of the key features of the book. Excellent for self -study or the classroom.
This self-contained work on linear and metric structures focuses on studying continuity and its applications to finite- and infinite-dimensional spaces.
The book is divided into three parts. The first part introduces the basic ideas of linear and metric spaces, including the Jordan canonical form of matrices and the spectral theorem for self-adjoint and normal operators. The second part examines the role of general topology in the context of metric spaces and includes the notions of homotopy and degree. The third and final part is a discussion on Banach spaces of continuous functions, Hilbert spaces and the spectral theory of compact operators.
Mathematical Analysis: Linear and Metric Structures and Continuity motivates the study of linear and metric structures with examples, observations, exercises, and illustrations. It may be used in the classroom setting or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering.
Other books recently published by the authors include: Mathematical Analysis: Functions of One Variable, and Mathematical Analysis: Approximation and Discrete Processes. This book builds upon the discussion in these books to provide the reader with a strong foundation in modern-day analysis.