Microarray Image Analysis : An Algorithmic Approach
Karl Fraser
Sold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since August 14, 2006
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since August 14, 2006
Condition: New
Quantity: 1 available
Add to basketnach der Bestellung gedruckt Neuware - Printed after ordering - To harness the high-throughput potential of DNA microarray technology, it is crucial that the analysis stages of the process are decoupled from the requirements of operator assistance. This book presents an automatic system for microarray image processing to make this decoupling a reality. The proposed system integrates and extends traditional analytical-based methods and custom-designed novel algorithms. The authors cover many new approaches for processing microarray images, such as novel subgrid detection, feature identification, and graph-cutting techniques. They include details of the algorithmic processes along with an analysis of the processes performance over real-world microarray image data.
Seller Inventory # 9781138115156
To harness the high-throughput potential of DNA microarray technology, it is crucial that the analysis stages of the process are decoupled from the requirements of operator assistance. Microarray Image Analysis: An Algorithmic Approach presents an automatic system for microarray image processing to make this decoupling a reality. The proposed system integrates and extends traditional analytical-based methods and custom-designed novel algorithms.
The book first explores a new technique that takes advantage of a multiview approach to image analysis and addresses the challenges of applying powerful traditional techniques, such as clustering, to full-scale microarray experiments. It then presents an effective feature identification approach, an innovative technique that renders highly detailed surface models, a new approach to subgrid detection, a novel technique for the background removal process, and a useful technique for removing "noise." The authors also develop an expectation–maximization (EM) algorithm for modeling gene regulatory networks from gene expression time series data. The final chapter describes the overall benefits of these techniques in the biological and computer sciences and reviews future research topics.
This book systematically brings together the fields of image processing, data analysis, and molecular biology to advance the state of the art in this important area. Although the text focuses on improving the processes involved in the analysis of microarray image data, the methods discussed can be applied to a broad range of medical and computer vision analysis areas.
Karl Fraser is a research fellow in the Centre for Intelligent Data Analysis at Brunel University.
Zidong Wang is a professor of dynamical systems and computing in the Department of Information Systems and Computing at Brunel University.
Xiaohu Liu is a professor of computing and head of the Centre for Intelligent Data Analysis at Brunel University.
"About this title" may belong to another edition of this title.
General Terms and Conditions and Customer Information / Privacy Policy
I. General Terms and Conditions
§ 1 Basic provisions
(1) The following terms and conditions apply to all contracts that you conclude with us as a provider (AHA-BUCH GmbH) via the Internet platforms AbeBooks and/or ZVAB. Unless otherwise agreed, the inclusion of any of your own terms and conditions used by you will be objected to
(2) A consumer within the meaning of the following regulations is any natural person who concludes...
More InformationWe ship your order after we received them
for articles on hand latest 24 hours,
for articles with overnight supply latest 48 hours.
In case we need to order an article from our supplier our dispatch time depends on the reception date of the articles, but the articles will be shipped on the same day.
Our goal is to send the ordered articles in the fastest, but also most efficient and secure way to our customers.