Model-Based Geostatistics
Ribeiro Paulo J. Jr. Diggle Peter J.
Sold by Majestic Books, Hounslow, United Kingdom
AbeBooks Seller since January 19, 2007
New - Hardcover
Condition: New
Quantity: 1 available
Add to basketSold by Majestic Books, Hounslow, United Kingdom
AbeBooks Seller since January 19, 2007
Condition: New
Quantity: 1 available
Add to basketGeostatistics is concerned with estimation and prediction problems for spatially continuous phenomena, using data obtained at a limited number of spatial locations. The name reflects its origins in mineral exploration, but the methods are now used in a wide range of settings including public health and the physical and environmental sciences. Model-based geostatistics refers to the application of general statistical principles of modeling and inference to geostatistical problems. This volume is the first book-length treatment of model-based geostatistics.
The authors have written an expository text, emphasizing statistical methods and applications rather than the underlying mathematical theory. Analyses of datasets from a range of scientific contexts feature prominently, and simulations are used to illustrate theoretical results. Readers can reproduce most of the computational results in the book by using the authors' R-based software package, geoR, whose usage is illustrated in a computation section at the end of each chapter.
The book assumes a working knowledge of classical and Bayesian methods of inference, linear models, and generalized linear models, but does not require previous exposure to spatial statistical models or methods. The authors have used the material in MSc-level statistics courses.
Geostatistics is concerned with estimation and prediction problems for spatially continuous phenomena, using data obtained at a limited number of spatial locations. The name reflects its origins in mineral exploration, but the methods are now used in a wide range of settings including public health and the physical and environmental sciences. Model-based geostatistics refers to the application of general statistical principles of modeling and inference to geostatistical problems. This volume is the first book-length treatment of model-based geostatistics.
The authors have written an expository text, emphasizing statistical methods and applications rather than the underlying mathematical theory. Analyses of datasets from a range of scientific contexts feature prominently, and simulations are used to illustrate theoretical results. Readers can reproduce most of the computational results in the book by using the authors' R-based software package, geoR, whose usage is illustrated in a computation section at the end of each chapter.
The book assumes a working knowledge of classical and Bayesian methods of inference, linear models, and generalized linear models, but does not require previous exposure to spatial statistical models or methods. The authors have used the material in MSc-level statistics courses.
Peter Diggle is Professor of Statistics at Lancaster University and Adjunct Professor of Biostatistics at Johns Hopkins University School of Public Health. Paulo Ribeiro is Senior Lecturer at Universidade Federal do Paraná.
"About this title" may belong to another edition of this title.
Returns accepted if you are not satisfied with the Service or Book.
Best packaging and fast delivery
Order quantity | 14 to 45 business days | 5 to 10 business days |
---|---|---|
First item | US$ 8.71 | US$ 13.20 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.