Moment Maps and Combinatorial Invariants of Hamiltonian Tn-spaces
Victor Guillemin
Sold by buchversandmimpf2000, Emtmannsberg, BAYE, Germany
AbeBooks Seller since January 23, 2017
New - Hardcover
Condition: New
Quantity: 2 available
Add to basketSold by buchversandmimpf2000, Emtmannsberg, BAYE, Germany
AbeBooks Seller since January 23, 2017
Condition: New
Quantity: 2 available
Add to basketNeuware -The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytope, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. For instance, the first chapter is largely devoted to the Delzant theorem, which says that there is a one-one correspondence between certain types of moment polytopes and certain types of symplectic G-spaces. (One of the most challenging unsolved problems in symplectic geometry is to determine to what extent Delzant¿s theorem is true of every compact symplectic G-Space.)The moment polytope also encodes quantum information about the actions of G. Using the methods of geometric quantization, one can frequently convert this action into a representations, p , of G on a Hilbert space, and in some sense the moment polytope is a diagrammatic picture of the irreducible representations of G which occur as subrepresentations of p. Precise versions of this item of folklore are discussed in Chapters 3 and 4. Also, midway through Chapter 2 a more complicated object is discussed: the Duistermaat-Heckman measure, and the author explains in Chapter 4 how one can read off from this measure the approximate multiplicities with which the irreducible representations of G occur in p. This gives an excuse to touch on some results which are in themselves of great current interest: the Duistermaat-Heckman theorem, the localization theorems in equivariant cohomology of Atiyah-Bott and Berline-Vergne and the recent extremely exciting generalizations of these results by Witten, Jeffrey-Kirwan, Lalkman, and others.The last two chapters of this book are a self-contained and somewhat unorthodoxtreatment of the theory of toric varieties in which the usual hierarchal relation of complex to symplectic is reversed. This book is addressed to researchersSpringer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 164 pp. Englisch.
Seller Inventory # 9780817637705
The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytope, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. For instance, the first chapter is largely devoted to the Delzant theorem, which says that there is a one-one correspondence between certain types of moment polytopes and certain types of symplectic G-spaces. (One of the most challenging unsolved problems in symplectic geometry is to determine to what extent Delzant’s theorem is true of every compact symplectic G-Space.)
The moment polytope also encodes quantum information about the actions of G. Using the methods of geometric quantization, one can frequently convert this action into a representations, p , of G on a Hilbert space, and in some sense the moment polytope is a diagrammatic picture of the irreducible representations of G which occur as subrepresentations of p. Precise versions of this item of folklore are discussed in Chapters 3 and 4. Also, midway through Chapter 2 a more complicated object is discussed: the Duistermaat-Heckman measure, and the author explains in Chapter 4 how one can read off from this measure the approximate multiplicities with which the irreducible representations of G occur in p. This gives an excuse to touch on some results which are in themselves of great current interest: the Duistermaat-Heckman theorem, the localization theorems in equivariant cohomology of Atiyah-Bott and Berline-Vergne and the recent extremely exciting generalizations of these results by Witten, Jeffrey-Kirwan, Lalkman, and others.
The last two chapters of this book are a self-contained and somewhat unorthodoxtreatment of the theory of toric varieties in which the usual hierarchal relation of complex to symplectic is reversed. This book is addressed to researchers
The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytope, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. For instance, the first chapter is largely devoted to the Delzant theorem, which says that there is a one-one correspondence between certain types of moment polytopes and certain types of symplectic G-spaces. (One of the most challenging unsolved problems in symplectic geometry is to determine to what extent Delzant’s theorem is true of every compact symplectic G-Space.)
The moment polytope also encodes quantum information about the actions of G. Using the methods of geometric quantization, one can frequently convert this action into a representations, p , of G on a Hilbert space, and in some sense the moment polytope is a diagrammatic picture of the irreducible representations of G which occur as subrepresentations of p. Precise versions of this item of folklore are discussed in Chapters 3 and 4. Also, midway through Chapter 2 a more complicated object is discussed: the Duistermaat-Heckman measure, and the author explains in Chapter 4 how one can read off from this measure the approximate multiplicities with which the irreducible representations of G occur in p. This gives an excuse to touch on some results which are in themselves of great current interest: the Duistermaat-Heckman theorem, the localization theorems in equivariant cohomology of Atiyah-Bott and Berline-Vergne and the recent extremely exciting generalizations of these results by Witten, Jeffrey-Kirwan, Lalkman, and others.
The last two chapters of this book are a self-contained and somewhat unorthodoxtreatment of the theory of toric varieties in which the usual hierarchal relation of complex to symplectic is reversed. This book is addressed to researchers and can be used as a semester text.
"About this title" may belong to another edition of this title.
Widerrufsbelehrung/ Muster-Widerrufsformular/
Allgemeine Geschäftsbedingungen und Kundeninformationen/ Datenschutzerklärung
Widerrufsrecht für Verbraucher
(Verbraucher ist jede natürliche Person, die ein Rechtsgeschäft zu Zwecken abschließt, die überwiegend weder ihrer gewerblichen noch ihrer selbstständigen beruflichen Tätigkeit zugerechnet werden können.)
Widerrufsbelehrung
Widerrufsrecht
Sie haben das Recht, binnen 14 Tagen ohne Angabe von Gründen diesen Vertrag zu widerrufen.
Die Widerrufsfr...
Soweit in der Artikelbeschreibung keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Werktagen nach Vertragsschluss, bei Vorauszahlung erst nach Eingang des vollständigen Kaufpreises und der Versandkosten. Alle Preise inkl. MwSt.
| Order quantity | 60 to 60 business days | 60 to 60 business days |
|---|---|---|
| First item | US$ 69.62 | US$ 87.02 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.