Synopsis:
The third edition of the book is a thoroughly rewritten version of the 1999 2nd edition. New material was included, some of the old material was discarded, and a large portion of the remainder was reorganized or revised.
This book provides a comprehensive and accessible presentation of algorithms for solving continuous optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. It places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning.
The book was developed through instruction at MIT, focuses on nonlinear and other types of optimization: iterative algorithms for constrained and unconstrained optimization, Lagrange multipliers and duality, large scale problems, and the interface between continuous and discrete optimization.
Among its special features, the book: 1) provides extensive coverage of iterative optimization methods within a unifying framework 2) provides a detailed treatment of interior point methods for linear programming 3) covers in depth duality theory from both a variational and a geometrical/convex analysis point of view 4) includes much new material on a number of topics, such as neural network training, large-scale optimization, signal processing, machine learning, and optimal control 5) includes a large number of examples and exercises detailed solutions of many of which are posted on the internet. Much supplementary/support material can be found at the publisher's and the author's web sites
About the Author:
Dimitri Bertsekas is McAffee Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, and a member of the National Academy of Engineering. He has researched a broad variety of subjects from optimization theory, control theory, parallel and distributed computation, systems analysis, and data communication networks. He has written numerous papers in each of these areas, and he has authored or coauthored seventeen textbooks. Professor Bertsekas was awarded the INFORMS 1997 Prize for Research Excellence in the Interface Between Operations Research and Computer Science for his book "Neuro-Dynamic Programming" (co-authored with John Tsitsiklis), the 2001 ACC John R. Ragazzini Education Award, the 2009 INFORMS Expository Writing Award, the 2014 ACC Richard E. Bellman Control Heritage Award for "contributions to the foundations of deterministic and stochastic optimization-based methods in systems and control," the 2014 Khachiyan Prize for Life-Time Accomplishments in Optimization, and the 2015 George B. Dantzig Prize. In 2018, he was awarded jointly with John Tsitsiklis, the INFORMS John von Neumann Theory Prize, for the contributions of the research monographs "Parallel and Distributed Computation" and "Neuro-Dynamic Programming". In 2001, he was elected to the United States National Academy of Engineering for "pioneering contributions to fundamental research, practice and education of optimization/control theory"
"About this title" may belong to another edition of this title.