Optimization Based Data Mining: Theory and Applications
Yong Shi
Sold by THE SAINT BOOKSTORE, Southport, United Kingdom
AbeBooks Seller since June 14, 2006
New - Soft cover
Condition: New
Quantity: Over 20 available
Add to basketSold by THE SAINT BOOKSTORE, Southport, United Kingdom
AbeBooks Seller since June 14, 2006
Condition: New
Quantity: Over 20 available
Add to basketThis item is printed on demand. New copy - Usually dispatched within 5-9 working days 498.
Seller Inventory # C9781447126539
Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining.
Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery.
Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.
Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining.
Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery.
Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.
"About this title" may belong to another edition of this title.
Please order through the Abebooks checkout. We only take orders through Abebooks - We don't take direct orders by email or phone.
Refunds or Returns: A full refund of the purchase price will be given if returned within 30 days in undamaged condition.
As a seller on abebooks we adhere to the terms explained at http://www.abebooks.co.uk/docs/HelpCentral/buyerIndex.shtml - if you require further assistance please email us at orders@thesaintbookstore.co.uk
Most orders usually ship within 1-3 business days, but some can take up to 7 days.