This research attempts to improve the efficiency of capturing network packets to disk using commodity, general-purpose hardware and operating systems. It examines the bottlenecks between NIC and disk, implements a kernel-space capture capability to improve storage effciency, and analyzes the performance characteristics of this approach. Results show that a kernel-space NIC-to-Disk capture module is both possible and beneffcial. The proof of concept PKAP kernel-space packet capture module can capture packets to disk with a packet drop rate 8.9% less than the user-space equivalent, at a 95% confidence interval. During the high levels of disk I/O contention produced by queries for the captured data, the PKAP implementation shows a 3% reduction in CPU utilization, and overall the PKAP implementation reduces memory utilization of the capture process by 16%.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.