The Pragmatic Programmer for Machine Learning
Marco Scutari, Mauro Malvestio
Sold by Rarewaves.com USA, London, LONDO, United Kingdom
AbeBooks Seller since June 11, 2025
New - Soft cover
Condition: New
Quantity: Over 20 available
Add to basketSold by Rarewaves.com USA, London, LONDO, United Kingdom
AbeBooks Seller since June 11, 2025
Condition: New
Quantity: Over 20 available
Add to basketMachine learning has redefined the way we work with data and is increasingly becoming an indispensable part of everyday life. The Pragmatic Programmer for Machine Learning: Engineering Analytics and Data Science Solutions discusses how modern software engineering practices are part of this revolution both conceptually and in practical applictions.Comprising a broad overview of how to design machine learning pipelines as well as the state-of-the-art tools we use to make them, this book provides a multi-disciplinary view of how traditional software engineering can be adapted to and integrated with the workflows of domain experts and probabilistic models.From choosing the right hardware to designing effective pipelines architectures and adopting software development best practices, this guide will appeal to machine learning and data science specialists, whilst also laying out key high-level principlesin a way that is approachable for students of computer science and aspiring programmers.
Seller Inventory # LU-9780367255060
Machine learning has redefined the way we work with data and is increasingly becoming an indispensable part of everyday life. The Pragmatic Programmer for Machine Learning: Engineering Analytics and Data Science Solutions discusses how modern software engineering practices are part of this revolution both conceptually and in practical applictions.
Comprising a broad overview of how to design machine learning pipelines as well as the state-of-the-art tools we use to make them, this book provides a multi-disciplinary view of how traditional software engineering can be adapted to and integrated with the workflows of domain experts and probabilistic models.
From choosing the right hardware to designing effective pipelines architectures and adopting software development best practices, this guide will appeal to machine learning and data science specialists, whilst also laying out key high-level principlesin a way that is approachable for students of computer science and aspiring programmers.
Marco Scutari is a Senior Researcher at Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Switzerland. He has held positions in statistics, statistical genetics and machine learning in the UK and Switzerland since completing his PhD in statistics in 2011. His research focuses on the theory of Bayesian networks and their applications to biological and clinical data, as well as statistical computing and software engineering.
Mauro Malvestio is a senior technologist based in Milan, Italy, with more than 15 years of experience in software engineering and IT operations in consulting and product companies as a CTO. His research focuses on software engineering, machine learning systems, embedded systems and cloud computing.
"About this title" may belong to another edition of this title.
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Russia
Belarus
Ukraine
Israel
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.
Order quantity | 9 to 14 business days | 9 to 14 business days |
---|---|---|
First item | US$ 0.00 | US$ 0.00 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.