Predicting Structured Data (Neural Information Processing Series)
Sold by Books Puddle, New York, NY, U.S.A.
AbeBooks Seller since November 22, 2018
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by Books Puddle, New York, NY, U.S.A.
AbeBooks Seller since November 22, 2018
Condition: New
Quantity: 1 available
Add to basketState-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.
Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning's greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.
Contributors
Yasemin Altun, Gökhan Bakir, Olivier Bousquet, Sumit Chopra, Corinna Cortes, Hal Daumé III, Ofer Dekel, Zoubin Ghahramani, Raia Hadsell, Thomas Hofmann, Fu Jie Huang, Yann LeCun, Tobias Mann, Daniel Marcu, David McAllester, Mehryar Mohri, William Stafford Noble, Fernando Pérez-Cruz, Massimiliano Pontil, Marc'Aurelio Ranzato, Juho Rousu, Craig Saunders, Bernhard Schölkopf, Matthias W. Seeger, Shai Shalev-Shwartz, John Shawe-Taylor, Yoram Singer, Alexander J. Smola, Sandor Szedmak, Ben Taskar, Ioannis Tsochantaridis, S.V.N Vishwanathan, Jason Weston
"About this title" may belong to another edition of this title.
We accept return for those books which are received damaged. Though we take appropriate care in packing to avoid such situation.