Python Reinforcement Learning
Ravichandiran, Sudharsan
Sold by SecondSale, Montgomery, IL, U.S.A.
AbeBooks Seller since December 20, 2007
Used - Soft cover
Condition: Used - Very good
Quantity: 2 available
Add to basketSold by SecondSale, Montgomery, IL, U.S.A.
AbeBooks Seller since December 20, 2007
Condition: Used - Very good
Quantity: 2 available
Add to basketItem in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc.
Seller Inventory # 00088064172
Apply modern reinforcement learning and deep reinforcement learning methods using Python and its powerful libraries
Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms.
The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL.
By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems.
This Learning Path includes content from the following Packt products:
If you're an ML/DL enthusiast interested in AI and want to explore RL and deep RL from scratch, this Learning Path is for you. Prior knowledge of linear algebra is expected.
Sudharsan Ravichandiran is a data scientist, researcher, artificial intelligence enthusiast, and YouTuber (search for Sudharsan reinforcement learning). He completed his bachelors in information technology at Anna University. His area of research focuses on practical implementations of deep learning and reinforcement learning, which includes natural language processing and computer vision. He used to be a freelance web developer and designer and has designed award-winning websites. He is an open source contributor and loves answering questions on Stack Overflow.
Sean Saito is the youngest ever Machine Learning Developer at SAP and the first bachelor hired for the position. He currently researches and develops machine learning algorithms that automate financial processes. He graduated from Yale-NUS College in 2017 with a Bachelor of Science degree (with Honours), where he explored unsupervised feature extraction for his thesis. Having a profound interest in hackathons, Sean represented Singapore during Data Science Game 2016, the largest student data science competition. Before attending university in Singapore, Sean grew up in Tokyo, Los Angeles, and Boston.
Rajalingappaa Shanmugamani is currently working as an Engineering Manager for a Deep learning team at Kairos. Previously, he worked as a Senior Machine Learning Developer at SAP, Singapore and worked at various startups in developing machine learning products. He has a Masters from Indian Institute of Technology-Madras. He has published articles in peer-reviewed journals and conferences and submitted applications for several patents in the area of machine learning. In his spare time, he coaches programming and machine learning to school students and engineers.
Yang Wenzhuo works as a Data Scientist at SAP, Singapore. He got a bachelor's degree in computer science from Zhejiang University in 2011 and a Ph.D. in machine learning from the National University of Singapore in 2016. His research focuses on optimization in machine learning and deep reinforcement learning. He has published papers on top machine learning/computer vision conferences including ICML and CVPR, and operations research journals including Mathematical Programming.
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it's described on the Abebooks web sites. If you're dissatisfied with your purchase (Incorrect Book/Not as Described/Damaged) or if the order hasn't arrived, you're eligible for a refund within 30 days of the estimated delivery date. If you've changed your mind about a book that you've ordered, please use the Ask bookseller a question link to contact us and we'll respond within 2 business days.
Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.