Radial Basis Function (rbf) Neural Network Control For Mechanical Systems
Liu, Jinkun
Sold by Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
AbeBooks Seller since April 17, 2013
New - Hardcover
Condition: New
Quantity: 1 available
Add to basketSold by Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
AbeBooks Seller since April 17, 2013
Condition: New
Quantity: 1 available
Add to basketThis is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Seller Inventory # ABNR-90575
Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.
This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation.
Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.
Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.
This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation.
Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it's described on the Abebooks web
sites. If you're dissatisfied with your purchase (Incorrect Book/Not as
Described/Damaged) or if the order hasn't arrived, you're eligible for a refund
within 30 days of the estimated delivery date. If you've changed your mind about
a book that you've ordered, please use the Ask bookseller a question link to
contact us and we'll respond within 2 business days. The contact persons name is
Constantin Marandici and the m...
Orders usually ship within 2 business days. Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required. We use USPS, DHL and ARAMEX for shipping.
Order quantity | 5 to 10 business days | 3 to 6 business days |
---|---|---|
First item | US$ 0.00 | US$ 0.00 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.