Science abounds with problems where the data are noisy and the answer is not a straight line. Semiparametric regression analysis helps make sense of such data in application areas that include engineering, finance, medicine and public health. The book is geared towards researchers and professionals with little background in regression as well as statistically oriented scientists (biostatisticians, econometricians, quantitative social scientists, and epidemiologists) with knowledge of regression and the desire to begin using more flexible semiparametric models. Author resource page: http://www.stat.tamu.edu/~carroll/semiregbook/
Science abounds with problems where the data are noisy and the answer is not a straight line. Semiparametric regression aims to make sense of such data. Application areas include engineering, finance, medicine and public health. Semiparametric Regression Modeling explains this topic in a concise and modular fashion. The book is pitched towarards researchers and pro fessionals with little background in regression and statistically oriented scientists, such as biostatisticians, econometricians, quantitative social scientists, epidemiologists, with a good working knowledge of regression and the desire to begin using more flexible semiparametric models.