Structure in Complex Networks
Reichardt J. Rg Reichardt Jorg
Sold by Majestic Books, Hounslow, United Kingdom
AbeBooks Seller since January 19, 2007
New - Soft cover
Condition: New
Quantity: 4 available
Add to basketSold by Majestic Books, Hounslow, United Kingdom
AbeBooks Seller since January 19, 2007
Condition: New
Quantity: 4 available
Add to basketPrint on Demand pp. 168 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Seller Inventory # 5820374
In the modern world of gigantic datasets, which scientists and practioners of all fields of learning are confronted with, the availability of robust, scalable and easy-to-use methods for pattern recognition and data mining are of paramount importance, so as to be able to cope with the avalanche of data in a meaningful way. This concise and pedagogical research monograph introduces the reader to two specific aspects - clustering techniques and dimensionality reduction - in the context of complex network analysis. The first chapter provides a short introduction into relevant graph theoretical notation; chapter 2 then reviews and compares a number of cluster definitions from different fields of science. In the subsequent chapters, a first-principles approach to graph clustering in complex networks is developed using methods from statistical physics and the reader will learn, that even today, this field significantly contributes to the understanding and resolution of the related statistical inference issues. Finally, an application chapter examines real-world networks from the economic realm to show how the network clustering process can be used to deal with large, sparse datasets where conventional analyses fail.
In the modern world of gigantic datasets, which scientists and practioners of all fields of learning are confronted with, the availability of robust, scalable and easy-to-use methods for pattern recognition and data mining are of paramount importance, so as to be able to cope with the avalanche of data in a meaningful way. This concise and pedagogical research monograph introduces the reader to two specific aspects - clustering techniques and dimensionality reduction - in the context of complex network analysis. The first chapter provides a short introduction into relevant graph theoretical notation; chapter 2 then reviews and compares a number of cluster definitions from different fields of science. In the subsequent chapters, a first-principles approach to graph clustering in complex networks is developed using methods from statistical physics and the reader will learn, that even today, this field significantly contributes to the understanding and resolution of the related statistical inference issues. Finally, an application chapter examines real-world networks from the economic realm to show how the network clustering process can be used to deal with large, sparse datasets where conventional analyses fail.
"About this title" may belong to another edition of this title.
Returns accepted if you are not satisfied with the Service or Book.
Best packaging and fast delivery
Order quantity | 14 to 45 business days | 5 to 10 business days |
---|---|---|
First item | US$ 8.73 | US$ 13.22 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.