Survey of Text Mining II : Clustering, Classification, and Retrieval
Malu Castellanos
Sold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since August 14, 2006
New - Soft cover
Condition: Neu
Quantity: 1 available
Add to basketSold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since August 14, 2006
Condition: Neu
Quantity: 1 available
Add to basketDruck auf Anfrage Neuware - Printed after ordering - As we enter the third decade of the World Wide Web (WWW), the textual revolution has seen a tremendous change in the availability of online information. Finding inf- mation for just about any need has never been more automatic-just a keystroke or mouseclick away. While the digitalization and creation of textual materials continues at light speed, the ability to navigate, mine, or casually browse through documents too numerous to read (or print) lags far behind. What approaches to text mining are available to ef ciently organize, classify, label, and extract relevant information for today's information-centric users What algorithms and software should be used to detect emerging trends from both text streamsandarchives Thesearejustafewoftheimportantquestionsaddressedatthe Text Mining Workshop held on April 28, 2007, in Minneapolis, MN. This workshop, the fth in a series of annual workshops on text mining, was held on the nal day of the Seventh SIAM International Conference on Data Mining (April 26-28, 2007). With close to 60 applied mathematicians and computer scientists representing universities, industrial corporations, and government laboratories, the workshop f- tured both invited and contributed talks on important topics such as the application of techniques of machine learning in conjunction with natural language processing, - formation extraction and algebraic/mathematical approaches to computational inf- mation retrieval. The workshop's program also included an Anomaly Detection/Text Mining competition. NASA Ames Research Center of Moffett Field, CA, and SAS Institute Inc. of Cary, NC, sponsored the workshop.
Seller Inventory # 9781849967136
The development of techniques for mining unstructured, semi-structured, and fully structured textual data has become critical in both academia and industry. This Second Edition brings readers thoroughly up to date with the emerging field of text mining, the application of techniques of machine learning in conjunction with natural language processing, information extraction, and algebraic/mathematical approaches to computational information retrieval. The book explores a broad range of issues, ranging from the development of new learning approaches to the parallelization of existing algorithms. In addition, it describes new application problems in areas such as email surveillance and anomaly detection. Presenting a comprehensive selection of topics within the field, this book is an indispensable resource for researchers, practitioners, and professionals involved in information retrieval, computational statistics, and datamining.
The proliferation of digital computing devices and their use in communication has resulted in an increased demand for systems and algorithms capable of mining textual data. Thus, the development of techniques for mining unstructured, semi-structured, and fully-structured textual data has become increasingly important in both academia and industry.
This second volume continues to survey the evolving field of text mining - the application of techniques of machine learning, in conjunction with natural language processing, information extraction and algebraic/mathematical approaches, to computational information retrieval. Numerous diverse issues are addressed, ranging from the development of new learning approaches to novel document clustering algorithms, collectively spanning several major topic areas in text mining.
Features:
• Acts as an important benchmark in the development of current and future approaches to mining textual information
• Serves as an excellent companion text for courses in text and data mining, information retrieval and computational statistics
• Experts from academia and industry share their experiences in solving large-scale retrieval and classification problems
• Presents an overview of current methods and software for text mining
• Highlights open research questions in document categorization and clustering, and trend detection
• Describes new application problems in areas such as email surveillance and anomaly detection
Survey of Text Mining II offers a broad selection in state-of-the art algorithms and software for text mining from both academic and industrial perspectives, to generate interest and insight into the state of the field. This book will be an indispensable resource for researchers, practitioners, and professionals involved in information retrieval, computational statistics, and datamining.
Michael W. Berry is a professor in the Department of Electrical Engineering and Computer Science at the University of Tennessee, Knoxville.
Malu Castellanos is a senior researcher at Hewlett-Packard Laboratories in Palo Alto, California.
"About this title" may belong to another edition of this title.
General Terms and Conditions and Customer Information / Privacy Policy
I. General Terms and Conditions
§ 1 Basic provisions
(1) The following terms and conditions apply to all contracts that you conclude with us as a provider (AHA-BUCH GmbH) via the Internet platforms AbeBooks and/or ZVAB. Unless otherwise agreed, the inclusion of any of your own terms and conditions used by you will be objected to
(2) A consumer within the meaning of the following regulations is any natural person who concludes...
More InformationWe ship your order after we received them
for articles on hand latest 24 hours,
for articles with overnight supply latest 48 hours.
In case we need to order an article from our supplier our dispatch time depends on the reception date of the articles, but the articles will be shipped on the same day.
Our goal is to send the ordered articles in the fastest, but also most efficient and secure way to our customers.