Variable Gain Design in Stochastic Iterative Learning Control (Hardcover)
Dong Shen
Sold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since June 29, 2022
New - Hardcover
Condition: New
Quantity: 1 available
Add to basketSold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since June 29, 2022
Condition: New
Quantity: 1 available
Add to basketHardcover. This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. The key concept for the gain design is to balance multiple performance indices such as high tracking precision, effective noise reduction, and fast convergence speed. These gain design techniques can be applied to various control algorithms for stochastic systems to realize a high tracking performance. This book provides a series of design and analysis techniques for the establishment of a systematic framework of gain design in SILC. The book is intended for scholars and graduate students who are interested in stochastic control, recursive algorithms design, and iterative learning control. This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Seller Inventory # 9789819782802
This book investigates the critical gain design in stochastic iterative learning control (SILC), including four specific gain design strategies: decreasing gain design, adaptive gain design, event-triggering gain design, and optimal gain design. The key concept for the gain design is to balance multiple performance indices such as high tracking precision, effective noise reduction, and fast convergence speed. These gain design techniques can be applied to various control algorithms for stochastic systems to realize a high tracking performance. This book provides a series of design and analysis techniques for the establishment of a systematic framework of gain design in SILC. The book is intended for scholars and graduate students who are interested in stochastic control, recursive algorithms design, and iterative learning control.
Dong Shen received the B.S. degree in mathematics from the School of Mathematics, Shandong University, Jinan, China, in 2005, and the Ph.D. degree in mathematics from the Academy of Mathematics and Systems Science, Chinese Academy of Sciences (CAS), Beijing, China, in 2010. From 2010 to 2012, he was a postdoctoral fellow with the Institute of Automation, CAS. From 2012 to 2019, he was with the College of Information Science and Technology, Beijing University of Chemical Technology, Beijing. In 2016 and 2019, he was a visiting scholar with the National University of Singapore, Singapore, and RMIT University, Melbourne, VIC, Australia, respectively. Since 2020, he has been a professor at the School of Mathematics, Renmin University of China, Beijing. His research interests include iterative learning control, stochastic optimization, stochastic systems, and distributed artificial intelligence.
"About this title" may belong to another edition of this title.
Orders can be returned within 30 days of receipt.
Please note that titles are dispatched from our US, Canadian or Australian warehouses. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 7-14 days.
Order quantity | 7 to 60 business days | 7 to 14 business days |
---|---|---|
First item | US$ 49.87 | US$ 49.87 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.