Variational Methods for Machine Learning with Applications to Deep Networks
Cinelli, Lucas Pinheiro|Marins, Matheus Araújo|Barros da Silva, Eduardo Antônio|Netto, Sérgio Lima
New - Soft cover
Quantity: Over 20 available
Add to basketQuantity: Over 20 available
Add to basketAbout this Item
Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and sh. Seller Inventory # 584143505
Bibliographic Details
Title: Variational Methods for Machine Learning ...
Publisher: Springer, Berlin|Springer International Publishing|Springer
Publication Date: 2022
Binding: Kartoniert / Broschiert
Condition: New
About this title
Lucas P. Cinelli was born in Rio de Janeiro, Brazil. He received the Electronics and Computer Engineering degree from the Universidade Federal do Rio de Janeiro (UFRJ), as well as the Engineering degree with major in Electronic Systems, Networks & Images from the Grande École Supélec, in France, due to his academic exchange in 2014-2016. During this period, he also received the Master’s degree in Microtechnologies, Architecture, Communication Networks and Systems from Supélec/INSA-Rennes. In 2019, he received the M.Sc. degree in Electrical Engineering from COPPE/UFRJ, for his dissertation on variational methods for machine learning and is currently pursuing his Ph.D. degree at the same institution. His research on anomaly detection in videos with deep learning alongside his colleagues has led to publications on ICIP 2018 and a Brazilian conference (SBrT) in 2017.
Matheus A. Marins was born in Rio de Janeiro, Brazil. He received the Electronics and Computer Engineering degree from the Universidade Federal do Rio de Janeiro (UFRJ), in 2016, having done a one-year exchange program at Illinois Institute of Technology (IIT), in the Computer Engineering course. He received the M.Sc. degree in Electrical Engineering from COPPE/UFRJ in 2018, being awarded with a scholarship for his academic performance by the Rio de Janeiro State government. Currently, he is pursuing his Ph.D. degree at the same institution and has shifted his research towards modern Bayesian methods applied to Machine Learning. So far, his research has been focused on Machine Learning, especially on condition-based models to identify and prevent failures on physical systems, which resulted on two international journals (2017 and 2020) and on a Brazilian conference paper (SBrT).Sergio L. Netto was born in Rio de Janeiro, Brazil. He received the B.Sc. (cum laude) degree from the Universidade Federal do Rio de Janeiro (UFRJ), Brazil, in 1991, the M.Sc. degree from COPPE/UFRJ in 1992, and the Ph.D. degree from the University of Victoria, BC, Canada, in 1996, all in electrical engineering. Since 1997, he has been with the Department of Electronics and Computer Engineering, Poli/UFRJ, and since 1998, he has been with the Program of Electrical Engineering, COPPE/UFRJ. He is the Co-Author (with P. S. R. Diniz and E. A. B. da Silva) of Digital Signal Processing: System Analysis and Design (Cambridge University Press, 2nd edition, 2010), which has also been translated to Chinese and Portuguese. His research and teaching interests lie in the areas of digital signal processing,speech processing, information theory, and computer vision. Prof. Netto received the 2006 Guillemin-Cauer award from the IEEE Circuits and Systems Society for the best paper published in the year of 2005 in the IEEE Trans. Circuits and Systems, Part I: Regular Papers.
"About this title" may belong to another edition of this title.
Store Description
Instructions for revocation/
Standard Business Terms and customer information/ data protection declaration
Revocation right for consumers
(A ?consumer? is any natural person who concludes a legal transaction which, to an overwhelming extent, cannot be attributed to either his commercial or independent professional activities.)
Instructions for revocation
Revocation right
You have the right to revoke this contract within one month without specifying any reasons.
The revocation period is one month...
II. Kundeninformationen
Moluna GmbH
Engberdingdamm 27
48268 Greven
Deutschland
Telefon: 02571/5698933
E-Mail: abe@moluna.de
Alternative Streitbeilegung:
Die Europäische Kommission stellt eine Plattform für die außergerichtliche Online-Streitbeilegung (OS-Plattform) bereit, aufrufbar unter https://ec.europa.eu/odr.
Die technischen Schritte zum Vertragsschluss, der Vertragsschluss selbst und die Korrekturmöglichkeiten erfolgen nach Maßgabe der Regelungen "Zustandekommen des Vertrages" unserer Allgemeinen Geschäftsbedingungen (Teil I.).
3.1. Vertragssprache ist deutsch .
3.2. Der vollständige Vertragstext wird von uns nicht gespeichert. Vor Absenden der Bestellung können die Vertragsdaten über die Druckfunktion des Browsers ausgedruckt oder elektronisch gesichert werden. Nach Zugang der Bestellung bei uns werden die Bestelldaten, die gesetzlich vorgeschriebenen Informationen bei Fernabsatzverträgen und die Allgemeinen Geschäftsbedingungen nochmals per E-Mail an Sie übersandt.
Die wesentlichen Merkmale der Ware und/oder Dienstleistung finden sich im jeweiligen Angebot.
5.1. Die in den jeweiligen Angeboten angeführten Preise sowie die Versandkosten stellen Gesamtpreise dar. Sie beinhalten alle Preisbestandteile einschließlich aller anfallenden Steuern.
5.2. Die anfallenden Versandkosten sind nicht im Kaufpreis enthalten. Sie sind über eine entsprechend bezeichnete Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot aufrufbar, werden im Laufe des Bestellvorganges gesondert ausgewiesen und sind von Ihnen zusätzlich zu tragen, soweit nicht die versandkostenfreie Lieferung zugesagt ist.
5.3. Die Ihnen zur Verfügung stehenden Zahlungsarten sind unter einer entsprechend bezeichneten Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot ausgewiesen.
5.4. Soweit bei den einzelnen Zahlungsarten nicht anders angegeben, sind die Zahlungsansprüche aus dem geschlossenen Vertrag sofort zur Zahlung fällig.
6.1. Die Lieferbedingungen, der Liefertermin sowie gegebenenfalls bestehende Lieferbeschränkungen finden sich unter einer entsprechend bezeichneten Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot.
Soweit im jeweiligen Angebot oder unter der entsprechend bezeichneten Schaltfläche keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Tagen nach Vertragsschluss (bei vereinbarter Vorauszahlung jedoch erst nach dem Zeitpunkt Ihrer Zahlungsanweisung).
6.2. Soweit Sie Verbraucher sind ist gesetzlich geregelt, dass die Gefahr des zufälligen Untergangs und der zufälligen Verschlechterung der verkauften Sache während der Versendung erst mit der Übergabe der Ware an Sie übergeht, unabhängig davon, ob die Versendung versichert oder unversichert erfolgt. Dies gilt nicht, wenn Sie eigenständig ein nicht vom Unternehmer benanntes Transportunternehmen oder eine sonst zur Ausführung der Versendung bestimmte Person beauftragt haben.
Sind Sie Unternehmer, erfolgt die Lieferung und Versendung auf Ihre Gefahr.
Die Mängelhaftung richtet sich nach der Regelung "Gewährleistung" in unseren Allgemeinen Geschäftsbedingungen (Teil I).
letzte Aktualisierung: 23.10.2019
Payment Methods
accepted by seller