Vision Based Autonomous Robot Navigation (Paperback)
Amitava Chatterjee
Sold by AussieBookSeller, Truganina, VIC, Australia
AbeBooks Seller since June 22, 2007
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by AussieBookSeller, Truganina, VIC, Australia
AbeBooks Seller since June 22, 2007
Condition: New
Quantity: 1 available
Add to basketPaperback. This monograph is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness.This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book describes successful implementation of integration of low-cost, external peripherals, with off-the-shelf procured robots. An important highlight of the book is that it presents a detailed, step-by-step sample demonstration of how vision-based navigation modules can be actually implemented in real life, under 32-bit Windows environment. The book also discusses the concept of implementing vision based SLAM employing a two camera based system. This monograph is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Seller Inventory # 9783642426704
This monograph is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness.
This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book describes successful implementation of integration of low-cost, external peripherals, with off-the-shelf procured robots. An important highlight of the book is that it presents a detailed, step-by-step sample demonstration of how vision-based navigation modules can be actually implemented in real life, under 32-bit Windows environment. The book also discusses the concept of implementing vision based SLAM employing a two camera based system.
This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness.
This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book describes successful implementation of integration of low-cost, external peripherals, with off-the-shelf procured robots. An important highlight of the book is that it presents a detailed, step-by-step sample demonstration of how vision-based navigation modules can be actually implemented in real life, under 32-bit Windows environment. The book also discusses the concept of implementing vision based SLAM employing a two camera based system.
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it's described on the Abebooks web sites. If you're dissatisfied with your purchase (Incorrect Book/Not as Described/Damaged) or if the order hasn't arrived, you're eligible for a refund within 30 days of the estimated delivery date. If you've changed your mind about a book that you've ordered, please use the Ask bookseller a question link to contact us and we'll respond within 2 business days.
Please note that titles are dispatched from our UK and NZ warehouse. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 8-15 days.
Order quantity | 25 to 45 business days | 8 to 14 business days |
---|---|---|
First item | US$ 37.00 | US$ 44.00 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.