Seller: PlumCircle, West Mifflin, PA, U.S.A.
paperback. Condition: Very Good. Publisher overstock. May have remainder mark / minor shelfwear. 99% of orders arrive in 4-10 days. Discounted shipping on multiple books.
Seller: Goodwill of Colorado, COLORADO SPRINGS, CO, U.S.A.
Condition: Good. This item is in overall good condition. Covers and dust jackets are intact but may have minor wear including slight curls or bends to corners as well as cosmetic blemishes including stickers. Pages are intact but may have minor highlighting/ writing. Binding is intact; however, spine may have slight wear overall. Digital codes may not be included and have not been tested to be redeemable and/or active. Minor shelf wear overall. Please note that all items are donated goods and are in used condition. Orders shipped Monday through Friday! Your purchase helps put people to work and learn life skills to reach their full potential. Orders shipped Monday through Friday. Your purchase helps put people to work and learn life skills to reach their full potential. Thank you!
Seller: HPB-Emerald, Dallas, TX, U.S.A.
paperback. Condition: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority!
Seller: SecondSale, Montgomery, IL, U.S.A.
Condition: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New.
Seller: California Books, Miami, FL, U.S.A.
Condition: New.
US$ 45.38
Convert currencyQuantity: 1 available
Add to basketRustica. Condition: Nuevo.
Published by Packt Publishing 5/31/2023, 2023
ISBN 10: 1804612987 ISBN 13: 9781804612989
Language: English
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more. Book.
Published by ANAYA MULTIMEDIA, ANAYA MULTIMEDIA-ANAYA INTERACTIVA, 2024
ISBN 10: 8441549206 ISBN 13: 9788441549203
Language: Spanish
Seller: Antártica, Madrid, M, Spain
US$ 45.85
Convert currencyQuantity: 1 available
Add to basketRustica (tapa blanda). Condition: New. Dust Jacket Condition: Nuevo. 01. En comparación con el aprendizaje automático tradicional y las estadísticas, los métodos causales presentan desafíos únicos. Aprender causalidad puede ser difícil, pero ofrece distintas ventajas que escapan a una mentalidad puramente estadística. Este libro ayuda a liberar todo el potencial de la causalidad.El libro comienza con las motivaciones básicas del pensamiento causal y una completa introducción a conceptos causales pearlianos, como los modelos causales estructurales, las intervenciones, los contrafactuales, etc. Cada concepto va acompañado de una explicación teórica y una serie de ejercicios prácticos con código Python. A continuación, entra de lleno en el mundo de la estimación del efecto causal, y avanza hacia los métodos de aprendizaje automático modernos.Paso a paso, descubrirás el ecosistema causal de Python y aprovecharás la potencia de los algoritmos más avanzados. Además, explorarás la mecánica de las huellas que dejan las causas y descubrirás las cuatro familias principales de métodos de descubrimiento causal. El capítulo final ofrece una amplia visión general del futuro de la IA causal, co. LIBRO.
US$ 43.56
Convert currencyQuantity: 2 available
Add to basketCondition: New. Idioma/Language: Español. En comparación con el aprendizaje automático tradicional y las estadísticas, los métodos causales presentan desafíos únicos. Aprender causalidad puede ser difícil, pero ofrece distintas ventajas que escapan a una mentalidad puramente estadística. Este libro ayuda a liberar todo el potencial de la causalidad. El libro comienza con las motivaciones básicas del pensamiento causal y una completa introducción a conceptos causales pearlianos, como los modelos causales estructurales, las intervenciones, los contrafactuales, etc. Cada concepto va acompañado de una explicación teórica y una serie de ejercicios prácticos con código Python. A continuación, entra de lleno en el mundo de la estimación del efecto causal, y avanza hacia los métodos de aprendizaje automático modernos. Paso a paso, descubrirás el ecosistema causal de Python y aprovecharás la potencia de los algoritmos más avanzados. Además, explorarás la mecánica de las huellas que dejan las causas y descubrirás las cuatro familias principales de métodos de descubrimiento causal. El capítulo final ofrece una amplia visión general del futuro de la IA causal, con un examen de retos y oportunidades y una exhaustiva lista de recursos para seguir aprendiendo cada vez más. Entre otras cosas, este libro permite: * Dominar los conceptos fundamentales de la inferencia causal. * Liberar el potencial del proceso de inferencia causal en cuatro pasos de Python. * Explorar avanzadas técnicas de modelado uplift o de elevación. * Descubrir los secretos del descubrimiento causal moderno con Python. * Utilizar la inferencia causal para producir impacto social y beneficios para la comunidad. *** Nota: Los envíos a España peninsular, Baleares y Canarias se realizan a través de mensajería urgente. No aceptamos pedidos con destino a Ceuta y Melilla.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New.
Published by Packt Publishing Limited, GB, 2023
ISBN 10: 1804612987 ISBN 13: 9781804612989
Language: English
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condition: New. Causal Inference and Discovery in Python is a comprehensive exploration of the theory and techniques at the intersection of modern causality and machine learning. It covers fundamental concepts of Pearlian causal inference, explains the theory, and provides step-by-step code examples for both traditional and advanced causal inference and discovery techniques.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 63.71
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. In.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
US$ 63.70
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
Published by Packt Publishing Limited, GB, 2023
ISBN 10: 1804612987 ISBN 13: 9781804612989
Language: English
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
US$ 83.77
Convert currencyQuantity: Over 20 available
Add to basketPaperback. Condition: New. Causal Inference and Discovery in Python is a comprehensive exploration of the theory and techniques at the intersection of modern causality and machine learning. It covers fundamental concepts of Pearlian causal inference, explains the theory, and provides step-by-step code examples for both traditional and advanced causal inference and discovery techniques.
US$ 42.34
Convert currencyQuantity: 8 available
Add to basketCondition: Nuevo. TITULOS ESPECIALES - CONCEPTOS DE PROGRAMACION, APRENDIZAJE DE LA PROGR# PROGRAMACION ORIENTADA A OBJETOS (POO)# PROGRAMACION DE WEB# INTELIGENCIA ARTIFICIAL# APRENDIZAJE AUTOMATICO.
Seller: Imosver, PONTECALDELAS, PO, Spain
US$ 42.44
Convert currencyQuantity: 1 available
Add to basketCondition: Nuevo. En comparación con el aprendizaje automático tradicional y las estadísticas, los métodos causales presentan desafíos únicos. Aprender causalidad puede ser difícil, pero ofrece distintas ventajas que escapan a una mentalidad puramente estadística. Este libro ayuda a liberar todo el potencial de la causalidad.El libro comienza con las motivaciones básicas del pensamiento causal y una completa introducción a conceptos causales pearlianos, como los modelos causales estructurales, las intervenciones, los contrafactuales, etc. Cada concepto va acompañado de una explicación teórica y una serie de ejercicios prácticos con código Python. A continuación, entra de lleno en el mundo de la estimación del efecto causal, y avanza hacia los métodos de aprendizaje automático modernos.Paso a paso, descubrirás el ecosistema causal de Python y aprovecharás la potencia de los algoritmos más avanzados. Además, explorarás la mecánica de las huellas que dejan las causas y descubrirás las cuatro familias principales de métodos de descubrimiento causal. El capítulo final ofrece una amplia visión general del futuro de la IA causal, con un examen de retos y oportunidades y una exhaustiva lista de recursos para seguir aprendiendo cada vez más.Entre otras cosas, este libro permite:* Dominar los conceptos fundamentales de la inferencia causal.* Liberar el potencial del proceso de inferencia causal en cuatro pasos de Python.* Explorar avanzadas técnicas de modelado uplift o de elevación.* Descubrir los secretos del descubrimiento causal moderno con Python.* Utilizar la inferencia causal para producir impacto social y beneficios para la comunidad.
Published by Packt Publishing Limited, GB, 2023
ISBN 10: 1804612987 ISBN 13: 9781804612989
Language: English
Seller: Rarewaves USA United, OSWEGO, IL, U.S.A.
US$ 80.81
Convert currencyQuantity: Over 20 available
Add to basketPaperback. Condition: New. Causal Inference and Discovery in Python is a comprehensive exploration of the theory and techniques at the intersection of modern causality and machine learning. It covers fundamental concepts of Pearlian causal inference, explains the theory, and provides step-by-step code examples for both traditional and advanced causal inference and discovery techniques.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition.
Condition: As New. Like New condition. A near perfect copy that may have very minor cosmetic defects.
Published by Packt Publishing Limited, GB, 2023
ISBN 10: 1804612987 ISBN 13: 9781804612989
Language: English
Seller: Rarewaves.com UK, London, United Kingdom
US$ 79.30
Convert currencyQuantity: Over 20 available
Add to basketPaperback. Condition: New. Causal Inference and Discovery in Python is a comprehensive exploration of the theory and techniques at the intersection of modern causality and machine learning. It covers fundamental concepts of Pearlian causal inference, explains the theory, and provides step-by-step code examples for both traditional and advanced causal inference and discovery techniques.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
US$ 158.50
Convert currencyQuantity: Over 20 available
Add to basketCondition: As New. Unread book in perfect condition.
Soft cover. Condition: New. Dust Jacket Condition: New.
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
US$ 64.79
Convert currencyQuantity: Over 20 available
Add to basketPAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller: Majestic Books, Hounslow, United Kingdom
US$ 72.23
Convert currencyQuantity: 4 available
Add to basketCondition: New. Print on Demand.
Seller: Biblios, Frankfurt am main, HESSE, Germany
US$ 76.86
Convert currencyQuantity: 4 available
Add to basketCondition: New. PRINT ON DEMAND.
Seller: AHA-BUCH GmbH, Einbeck, Germany
US$ 89.35
Convert currencyQuantity: 1 available
Add to basketTaschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental dataPurchase of the print or Kindle book includes a free PDF Elektronisches BuchKey Features Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more Discover modern causal inference techniques for average and heterogenous treatment effect estimation Explore and leverage traditional and modern causal discovery methodsBook DescriptionCausal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.You'll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code. Next, you'll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you'll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You'll further explore the mechanics of how 'causes leave traces' and compare the main families of causal discovery algorithms. The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.By the end of this book, you will be able to build your own models for causal inference and discovery using statistical and machine learning techniques as well as perform basic project assessment.What you will learn Master the fundamental concepts of causal inference Decipher the mysteries of structural causal models Unleash the power of the 4-step causal inference process in Python Explore advanced uplift modeling techniques Unlock the secrets of modern causal discovery using Python Use causal inference for social impact and community benefitWho this book is forThis book is for machine learning engineers, researchers, and data scientists looking to extend their toolkit and explore causal machine learning. It will also help people who've worked with causality using other programming languages and now want to switch to Python, those who worked with traditional causal inference and want to learn about causal machine learning, and tech-savvy entrepreneurs who want to go beyond the limitations of traditional ML. You are expected to have basic knowledge of Python and Python scientific libraries along with knowledge of basic probability and statistics.Table of Contents Causality - Hey, We Have Machine Learning, So Why Even Bother Judea Pearl and the Ladder of Causation Regression, Observations, and Interventions Graphical Models Forks, Chains, and Immoralities Nodes, Edges, and Statistical (In)dependence The Four-Step Process of Causal Inference Causal Models - Assumptions and Challenges Causal Inference and Machine Learning - from Matching to Meta- Learners Causal Inference and Machine Learning - Advanced Estimators, Experiments, Evaluations, and More Causal Inference and Machine Learning - Deep Learning, NLP, and Beyond Can I Have a Causal Graph, Please (N.B. Please use the Read Sample option to see further chapters).