Seller: GreatBookPrices, Columbia, MD, U.S.A.
US$ 48.81
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Automated Deep Learning Using Neural Network Intelligence: Develop and Design Pytorch and Tensorflow Models Using Python 1.54. Book.
Seller: Lakeside Books, Benton Harbor, MI, U.S.A.
US$ 47.50
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
US$ 51.38
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
US$ 54.92
Convert currencyQuantity: Over 20 available
Add to basketCondition: As New. Unread book in perfect condition.
Seller: California Books, Miami, FL, U.S.A.
Condition: New.
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
First Edition
Paperback. Condition: new. Paperback. Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model development. The first chapters of this book cover the basics of NNI toolkit usage and methods for solving hyper-parameter optimization tasks. You will understand the black-box function maximization problem using NNI, and know how to prepare a TensorFlow or PyTorch model for hyper-parameter tuning, launch an experiment, and interpret the results. The book dives into optimization tuners and the search algorithms they are based on: Evolution search, Annealing search, and the Bayesian Optimization approach. The Neural Architecture Search is covered and you will learn how to develop deep learning models from scratch. Multi-trial and one-shot searching approaches of automatic neural network design are presented. The book teaches you how to construct a search space and launch an architecture search using the latest state-of-the-art exploration strategies: Efficient Neural Architecture Search (ENAS) and Differential Architectural Search (DARTS). You will learn how to automate the construction of a neural network architecture for a particular problem and dataset. The book focuses on model compression and feature engineering methods that are essential in automated deep learning. It also includes performance techniques that allow the creation of large-scale distributive training platforms using NNI. After reading this book, you will know how to use the full toolkit of automated deep learning methods. The techniques and practical examples presented in this book will allow you to bring your neural network routines to a higher level.What You Will LearnKnow the basic concepts of optimization tuners, search space, and trialsApply different hyper-parameter optimization algorithms to develop effective neural networksConstruct new deep learning models from scratchExecute the automated Neural Architecture Search to create state-of-the-art deep learning modelsCompress the model to eliminate unnecessary deep learning layersWho This Book Is For Intermediate to advanced data scientists and machine learning engineers involved in deep learning and practical neural network development Intermediate-Advanced user level Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
ISBN 10: 1484290925 ISBN 13: 9781484290927
Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide.
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
US$ 68.57
Convert currencyQuantity: 1 available
Add to basketPAP. Condition: New. New Book. Shipped from UK. Established seller since 2000.
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
First Edition
US$ 82.53
Convert currencyQuantity: 8 available
Add to basketPaperback. Condition: New. 1st ed. Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model development. The first chapters of this book cover the basics of NNI toolkit usage and methods for solving hyper-parameter optimization tasks. You will understand the black-box function maximization problem using NNI, and know how to prepare a TensorFlow or PyTorch model for hyper-parameter tuning, launch an experiment, and interpret the results. The book dives into optimization tuners and the search algorithms they are based on: Evolution search, Annealing search, and the Bayesian Optimization approach. The Neural Architecture Search is covered and you will learn how to develop deep learning models from scratch. Multi-trial and one-shot searching approaches of automatic neural network design are presented. The book teaches you how to construct a search space and launch an architecture search using the latest state-of-the-art exploration strategies: Efficient Neural Architecture Search (ENAS) and Differential Architectural Search (DARTS). You will learn how to automate the construction of a neural network architecture for a particular problem and dataset. The book focuses on model compression and feature engineering methods that are essential in automated deep learning. It also includes performance techniques that allow the creation of large-scale distributive training platforms using NNI. After reading this book, you will know how to use the full toolkit of automated deep learning methods. The techniques and practical examples presented in this book will allow you to bring your neural network routines to a higher level.What You Will LearnKnow the basic concepts of optimization tuners, search space, and trialsApply different hyper-parameter optimization algorithms to develop effective neural networksConstruct new deep learning models from scratchExecute the automated Neural Architecture Search to create state-of-the-art deep learning modelsCompress the model to eliminate unnecessary deep learning layersWho This Book Is For Intermediate to advanced data scientists and machine learning engineers involved in deep learning and practical neural network development.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
US$ 64.79
Convert currencyQuantity: Over 20 available
Add to basketCondition: As New. Unread book in perfect condition.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
US$ 66.42
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 72.31
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. In.
Seller: Chiron Media, Wallingford, United Kingdom
US$ 70.83
Convert currencyQuantity: 10 available
Add to basketPF. Condition: New.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New.
Seller: Revaluation Books, Exeter, United Kingdom
US$ 82.12
Convert currencyQuantity: 2 available
Add to basketPaperback. Condition: Brand New. 401 pages. 10.00x7.00x0.83 inches. In Stock.
Seller: AussieBookSeller, Truganina, VIC, Australia
First Edition
US$ 108.95
Convert currencyQuantity: 1 available
Add to basketPaperback. Condition: new. Paperback. Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model development. The first chapters of this book cover the basics of NNI toolkit usage and methods for solving hyper-parameter optimization tasks. You will understand the black-box function maximization problem using NNI, and know how to prepare a TensorFlow or PyTorch model for hyper-parameter tuning, launch an experiment, and interpret the results. The book dives into optimization tuners and the search algorithms they are based on: Evolution search, Annealing search, and the Bayesian Optimization approach. The Neural Architecture Search is covered and you will learn how to develop deep learning models from scratch. Multi-trial and one-shot searching approaches of automatic neural network design are presented. The book teaches you how to construct a search space and launch an architecture search using the latest state-of-the-art exploration strategies: Efficient Neural Architecture Search (ENAS) and Differential Architectural Search (DARTS). You will learn how to automate the construction of a neural network architecture for a particular problem and dataset. The book focuses on model compression and feature engineering methods that are essential in automated deep learning. It also includes performance techniques that allow the creation of large-scale distributive training platforms using NNI. After reading this book, you will know how to use the full toolkit of automated deep learning methods. The techniques and practical examples presented in this book will allow you to bring your neural network routines to a higher level.What You Will LearnKnow the basic concepts of optimization tuners, search space, and trialsApply different hyper-parameter optimization algorithms to develop effective neural networksConstruct new deep learning models from scratchExecute the automated Neural Architecture Search to create state-of-the-art deep learning modelsCompress the model to eliminate unnecessary deep learning layersWho This Book Is For Intermediate to advanced data scientists and machine learning engineers involved in deep learning and practical neural network development Intermediate-Advanced user level Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Seller: Rarewaves.com UK, London, United Kingdom
First Edition
US$ 78.37
Convert currencyQuantity: 8 available
Add to basketPaperback. Condition: New. 1st ed. Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model development. The first chapters of this book cover the basics of NNI toolkit usage and methods for solving hyper-parameter optimization tasks. You will understand the black-box function maximization problem using NNI, and know how to prepare a TensorFlow or PyTorch model for hyper-parameter tuning, launch an experiment, and interpret the results. The book dives into optimization tuners and the search algorithms they are based on: Evolution search, Annealing search, and the Bayesian Optimization approach. The Neural Architecture Search is covered and you will learn how to develop deep learning models from scratch. Multi-trial and one-shot searching approaches of automatic neural network design are presented. The book teaches you how to construct a search space and launch an architecture search using the latest state-of-the-art exploration strategies: Efficient Neural Architecture Search (ENAS) and Differential Architectural Search (DARTS). You will learn how to automate the construction of a neural network architecture for a particular problem and dataset. The book focuses on model compression and feature engineering methods that are essential in automated deep learning. It also includes performance techniques that allow the creation of large-scale distributive training platforms using NNI. After reading this book, you will know how to use the full toolkit of automated deep learning methods. The techniques and practical examples presented in this book will allow you to bring your neural network routines to a higher level.What You Will LearnKnow the basic concepts of optimization tuners, search space, and trialsApply different hyper-parameter optimization algorithms to develop effective neural networksConstruct new deep learning models from scratchExecute the automated Neural Architecture Search to create state-of-the-art deep learning modelsCompress the model to eliminate unnecessary deep learning layersWho This Book Is For Intermediate to advanced data scientists and machine learning engineers involved in deep learning and practical neural network development.
Seller: Buchpark, Trebbin, Germany
US$ 57.24
Convert currencyQuantity: 7 available
Add to basketCondition: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher.
Seller: Revaluation Books, Exeter, United Kingdom
US$ 76.10
Convert currencyQuantity: 1 available
Add to basketPaperback. Condition: Brand New. 401 pages. 10.00x7.00x0.83 inches. In Stock. This item is printed on demand.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
US$ 84.03
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model development. The first chapters of this book cover the basics of NNI toolkit usage and methods for solving hyper-parameter optimization tasks. You will understand the black-box function maximization problem using NNI, and know how to prepare a TensorFlow or PyTorch model for hyper-parameter tuning, launch an experiment, and interpret the results. The book dives into optimization tuners and the search algorithms they are based on: Evolution search, Annealing search, and the Bayesian Optimization approach. The Neural Architecture Search is covered and you will learn how to develop deep learning models from scratch. Multi-trial and one-shot searching approaches of automatic neural network design are presented. The book teaches you how to construct a search space and launch an architecture search using the latest state-of-the-art exploration strategies: Efficient Neural Architecture Search (ENAS) and Differential Architectural Search (DARTS). You will learn how to automate the construction of a neural network architecture for a particular problem and dataset. The book focuses on model compression and feature engineering methods that are essential in automated deep learning. It also includes performance techniques that allow the creation of large-scale distributive training platforms using NNI. After reading this book, you will know how to use the full toolkit of automated deep learning methods. The techniques and practical examples presented in this book will allow you to bring your neural network routines to a higher level.What You Will LearnKnow the basic concepts of optimization tuners, search space, and trialsApply different hyper-parameter optimization algorithms to develop effective neural networksConstruct new deep learning models from scratchExecute the automated Neural Architecture Search to create state-of-the-art deep learning modelsCompress the model to eliminate unnecessary deep learning layersWho This Book Is ForIntermediate to advanced data scientists and machine learning engineers involved in deep learning and practical neural network development 384 pp. Englisch.
Seller: Majestic Books, Hounslow, United Kingdom
US$ 103.12
Convert currencyQuantity: 4 available
Add to basketCondition: New. Print on Demand.
Seller: Biblios, Frankfurt am main, HESSE, Germany
US$ 112.85
Convert currencyQuantity: 4 available
Add to basketCondition: New. PRINT ON DEMAND.
Published by Springer, Berlin|Apress, 2022
ISBN 10: 1484281489 ISBN 13: 9781484281482
Language: English
Seller: moluna, Greven, Germany
US$ 74.94
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides technique.
Seller: AHA-BUCH GmbH, Einbeck, Germany
US$ 89.27
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model development. The first chapters of this book cover the basics of NNI toolkit usage and methods for solving hyper-parameter optimization tasks. You will understand the black-box function maximization problem using NNI, and know how to prepare a TensorFlow or PyTorch model for hyper-parameter tuning, launch an experiment, and interpret the results. The book dives into optimization tuners and the search algorithms they are based on: Evolution search, Annealing search, and the Bayesian Optimization approach. The Neural Architecture Search is covered and you will learn how to develop deep learning models from scratch. Multi-trial and one-shot searching approaches of automatic neural network design are presented. The book teaches you how to construct a search space and launch an architecture search using the latest state-of-the-art exploration strategies: Efficient Neural Architecture Search (ENAS) and Differential Architectural Search (DARTS). You will learn how to automate the construction of a neural network architecture for a particular problem and dataset. The book focuses on model compression and feature engineering methods that are essential in automated deep learning. It also includes performance techniques that allow the creation of large-scale distributive training platforms using NNI. After reading this book, you will know how to use the full toolkit of automated deep learning methods. The techniques and practical examples presented in this book will allow you to bring your neural network routines to a higher level.What You Will LearnKnow the basic concepts of optimization tuners, search space, and trialsApply different hyper-parameter optimization algorithms to develop effective neural networksConstruct new deep learning models from scratchExecute the automated Neural Architecture Search to create state-of-the-art deep learning modelsCompress the model to eliminate unnecessary deep learning layersWho This Book Is ForIntermediate to advanced data scientists and machine learning engineers involved in deep learning and practical neural network development.