Seller: HPB-Diamond, Dallas, TX, U.S.A.
Paperback. Condition: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority!
Seller: WeBuyBooks, Rossendale, LANCS, United Kingdom
Condition: Very Good. Most items will be dispatched the same or the next working day. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Condition: New.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 60.91
Quantity: Over 20 available
Add to basketCondition: New. In.
Paperback. Condition: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Condition: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present.
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Deep Learning with Keras | Implementing deep learning models and neural networks with the power of Python | Antonio Gulli (u. a.) | Taschenbuch | Kartoniert / Broschiert | Englisch | 2017 | Packt Publishing | EAN 9781787128422 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Publisher's Note: This edition from 2017 is outdated and is not compatible with TensorFlow 2 or any of the most recent updates to Python libraries. A new second edition, updated for 2020 and featuring TensorFlow 2, the Keras API, CNNs, GANs, RNNs, NLP, and AutoML, has now been published.Key Features:Implement various deep learning algorithms in Keras and see how deep learning can be used in gamesSee how various deep learning models and practical use-cases can be implemented using KerasA practical, hands-on guide with real-world examples to give you a strong foundation in KerasBook Description:This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided.Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer.Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.What You Will Learn:Optimize step-by-step functions on a large neural network using the Backpropagation algorithmFine-tune a neural network to improve the quality of resultsUse deep learning for image and audio processingUse Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special casesIdentify problems for which Recurrent Neural Network (RNN) solutions are suitableExplore the process required to implement AutoencodersEvolve a deep neural network using reinforcement learningWho this book is for:If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.