Search preferences
Skip to main search results

Search filters

Product Type

  • All Product Types 
  • Books (4)
  • Magazines & Periodicals (No further results match this refinement)
  • Comics (No further results match this refinement)
  • Sheet Music (No further results match this refinement)
  • Art, Prints & Posters (No further results match this refinement)
  • Photographs (No further results match this refinement)
  • Maps (No further results match this refinement)
  • Manuscripts & Paper Collectibles (No further results match this refinement)

Condition Learn more

  • New (4)
  • As New, Fine or Near Fine (No further results match this refinement)
  • Very Good or Good (No further results match this refinement)
  • Fair or Poor (No further results match this refinement)
  • As Described (No further results match this refinement)

Binding

Collectible Attributes

Language (1)

Price

  • Any Price 
  • Under US$ 25 
  • US$ 25 to US$ 50 (No further results match this refinement)
  • Over US$ 50 (No further results match this refinement)
Custom price range (US$)

Free Shipping

  • Free Shipping to U.S.A. (No further results match this refinement)

Seller Location

  • Mike Nkongolo

    Published by GRIN Verlag, 2018

    ISBN 10: 3668642605 ISBN 13: 9783668642607

    Language: English

    Seller: AHA-BUCH GmbH, Einbeck, Germany

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    US$ 70.58 shipping from Germany to U.S.A.

    Destination, rates & speeds

    Quantity: 1 available

    Add to basket

    Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance.

  • Mike Nkongolo

    Published by GRIN Verlag, 2018

    ISBN 10: 3668642605 ISBN 13: 9783668642607

    Language: English

    Seller: preigu, Osnabrück, Germany

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    US$ 81.84 shipping from Germany to U.S.A.

    Destination, rates & speeds

    Quantity: 5 available

    Add to basket

    Taschenbuch. Condition: Neu. Demystifying Human Action Recognition in Deep Learning with Space-Time Feature Descriptors | Mike Nkongolo | Taschenbuch | 40 S. | Englisch | 2018 | GRIN Verlag | EAN 9783668642607 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.

  • Mike Nkongolo

    Published by GRIN Verlag Feb 2018, 2018

    ISBN 10: 3668642605 ISBN 13: 9783668642607

    Language: English

    Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    Print on Demand

    US$ 26.89 shipping from Germany to U.S.A.

    Destination, rates & speeds

    Quantity: 2 available

    Add to basket

    Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance. 40 pp. Englisch.

  • Mike Nkongolo

    Published by GRIN Verlag, GRIN Verlag Feb 2018, 2018

    ISBN 10: 3668642605 ISBN 13: 9783668642607

    Language: English

    Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    Print on Demand

    US$ 70.15 shipping from Germany to U.S.A.

    Destination, rates & speeds

    Quantity: 1 available

    Add to basket

    Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance.Books on Demand GmbH, Überseering 33, 22297 Hamburg 40 pp. Englisch.