Seller: AHA-BUCH GmbH, Einbeck, Germany
US$ 21.62
Convert currencyQuantity: 1 available
Add to basketTaschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance.
Seller: preigu, Osnabrück, Germany
US$ 21.62
Convert currencyQuantity: 5 available
Add to basketTaschenbuch. Condition: Neu. Demystifying Human Action Recognition in Deep Learning with Space-Time Feature Descriptors | Mike Nkongolo | Taschenbuch | 40 S. | Englisch | 2018 | GRIN Verlag | EAN 9783668642607 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Published by GRIN Verlag Feb 2018, 2018
ISBN 10: 3668642605 ISBN 13: 9783668642607
Language: English
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
US$ 21.62
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance. 40 pp. Englisch.
Published by GRIN Verlag, GRIN Verlag Feb 2018, 2018
ISBN 10: 3668642605 ISBN 13: 9783668642607
Language: English
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
US$ 21.62
Convert currencyQuantity: 1 available
Add to basketTaschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance.Books on Demand GmbH, Überseering 33, 22297 Hamburg 40 pp. Englisch.