Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING.
Seller: California Books, Miami, FL, U.S.A.
Condition: New.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 112.88
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. In.
Published by Hartung-Gorre 2022-12, 2022
ISBN 10: 3866287771 ISBN 13: 9783866287778
Language: English
Seller: Chiron Media, Wallingford, United Kingdom
US$ 112.83
Convert currencyQuantity: 10 available
Add to basketPF. Condition: New.
Published by Hartung-Gorre Dez 2022, 2022
ISBN 10: 3866287771 ISBN 13: 9783866287778
Language: English
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
US$ 77.01
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. Neuware -Aging population and the thereby ever-rising cost of health services call for novel and innovative solutions for providing medical care and services. So far, medical care is primarily provided in the form of time-consuming in-person appointments with trained personnel and expensive, stationary instrumentation equipment. As for many current and past challenges, the advances in microelectronics are a crucial enabler and offer a plethora of opportunities. With key building blocks such as sensing, processing, and communication systems and circuits getting smaller, cheaper, and more energy-efficient, personal and wearable or even implantable point-of-care devices with medicalgrade instrumentation capabilities become feasible. Device size and battery lifetime are paramount for the realization of such devices. Besides integrating the required functionality into as few individual microelectronic components as possible, the energy efficiency of such is crucial to reduce battery size, usually being the dominant contributor to overall device size.In this thesis, we present two major contributions to achieve the discussed goals in the context of miniaturized medical instrumentation: First, we present a synchronization solution for embedded, parallel near-threshold computing (NTC), a promising concept for enabling the required processing capabilities with an energy efficiency that is suitable for highly mobile devices with very limited battery capacity. Our proposed solution aims at increasing energy efficiency and performance for parallel NTC clusters by maximizing the effective utilization of the available cores under parallel workloads. We describe a hardware unit that enables fine-grain parallelization by greatly optimizing and accelerating core-to-core synchronization and communication and analyze the impact of those mechanisms on the overall performance and energy efficiency of an eight-core cluster. With a range of digital signal processing (DSP) applications typical for the targeted systems, the proposed hardware unit improves performance by up to 92% and 23% on average and energy efficiency by up to 98% and 39% on average. In the second part, we present a MCU processing and control subsystem (MPCS) for the integration into VivoSoC, a highly versatile single-chip solution for mobile medical instrumentation. In addition to the MPCS, it includes a multitude of analog front-ends (AFEs) and a multi-channel power management IC (PMIC) for voltage conversion. .Books on Demand GmbH, Überseering 33, 22297 Hamburg 214 pp. Englisch.
Published by Hartung-Gorre Nov 2022, 2022
ISBN 10: 3866287771 ISBN 13: 9783866287778
Language: English
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
US$ 77.01
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Aging population and the thereby ever-rising cost of health services call for novel and innovative solutions for providing medical care and services. So far, medical care is primarily provided in the form of time-consuming in-person appointments with trained personnel and expensive, stationary instrumentation equipment. As for many current and past challenges, the advances in microelectronics are a crucial enabler and offer a plethora of opportunities. With key building blocks such as sensing, processing, and communication systems and circuits getting smaller, cheaper, and more energy-efficient, personal and wearable or even implantable point-of-care devices with medicalgrade instrumentation capabilities become feasible. Device size and battery lifetime are paramount for the realization of such devices. Besides integrating the required functionality into as few individual microelectronic components as possible, the energy efficiency of such is crucial to reduce battery size, usually being the dominant contributor to overall device size.In this thesis, we present two major contributions to achieve the discussed goals in the context of miniaturized medical instrumentation: First, we present a synchronization solution for embedded, parallel near-threshold computing (NTC), a promising concept for enabling the required processing capabilities with an energy efficiency that is suitable for highly mobile devices with very limited battery capacity. Our proposed solution aims at increasing energy efficiency and performance for parallel NTC clusters by maximizing the effective utilization of the available cores under parallel workloads. We describe a hardware unit that enables fine-grain parallelization by greatly optimizing and accelerating core-to-core synchronization and communication and analyze the impact of those mechanisms on the overall performance and energy efficiency of an eight-core cluster. With a range of digital signal processing (DSP) applications typical for the targeted systems, the proposed hardware unit improves performance by up to 92% and 23% on average and energy efficiency by up to 98% and 39% on average. In the second part, we present a MCU processing and control subsystem (MPCS) for the integration into VivoSoC, a highly versatile single-chip solution for mobile medical instrumentation. In addition to the MPCS, it includes a multitude of analog front-ends (AFEs) and a multi-channel power management IC (PMIC) for voltage conversion. . 214 pp. Englisch.
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
US$ 118.36
Convert currencyQuantity: Over 20 available
Add to basketPAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller: moluna, Greven, Germany
US$ 77.01
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt.
Seller: AHA-BUCH GmbH, Einbeck, Germany
US$ 77.01
Convert currencyQuantity: 1 available
Add to basketTaschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Aging population and the thereby ever-rising cost of health services call for novel and innovative solutions for providing medical care and services. So far, medical care is primarily provided in the form of time-consuming in-person appointments with trained personnel and expensive, stationary instrumentation equipment. As for many current and past challenges, the advances in microelectronics are a crucial enabler and offer a plethora of opportunities. With key building blocks such as sensing, processing, and communication systems and circuits getting smaller, cheaper, and more energy-efficient, personal and wearable or even implantable point-of-care devices with medicalgrade instrumentation capabilities become feasible. Device size and battery lifetime are paramount for the realization of such devices. Besides integrating the required functionality into as few individual microelectronic components as possible, the energy efficiency of such is crucial to reduce battery size, usually being the dominant contributor to overall device size.In this thesis, we present two major contributions to achieve the discussed goals in the context of miniaturized medical instrumentation: First, we present a synchronization solution for embedded, parallel near-threshold computing (NTC), a promising concept for enabling the required processing capabilities with an energy efficiency that is suitable for highly mobile devices with very limited battery capacity. Our proposed solution aims at increasing energy efficiency and performance for parallel NTC clusters by maximizing the effective utilization of the available cores under parallel workloads. We describe a hardware unit that enables fine-grain parallelization by greatly optimizing and accelerating core-to-core synchronization and communication and analyze the impact of those mechanisms on the overall performance and energy efficiency of an eight-core cluster. With a range of digital signal processing (DSP) applications typical for the targeted systems, the proposed hardware unit improves performance by up to 92% and 23% on average and energy efficiency by up to 98% and 39% on average. In the second part, we present a MCU processing and control subsystem (MPCS) for the integration into VivoSoC, a highly versatile single-chip solution for mobile medical instrumentation. In addition to the MPCS, it includes a multitude of analog front-ends (AFEs) and a multi-channel power management IC (PMIC) for voltage conversion. .
Seller: preigu, Osnabrück, Germany
US$ 77.01
Convert currencyQuantity: 5 available
Add to basketTaschenbuch. Condition: Neu. An Event-Driven Parallel-Processing Subsystem for Energy-Efficient Mobile Medical Instrumentation | Florian Stefan Glaser | Taschenbuch | Kartoniert / Broschiert | Englisch | 2022 | Hartung-Gorre | EAN 9783866287778 | Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu Print on Demand.