Seller: GreatBookPrices, Columbia, MD, U.S.A.
US$ 42.13
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
Published by Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2025
ISBN 13: 9798868809644
Language: English
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julias APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will Learn Work with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
US$ 42.74
Convert currencyQuantity: Over 20 available
Add to basketCondition: As New. Unread book in perfect condition.
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING.
Seller: California Books, Miami, FL, U.S.A.
Condition: New.
Published by Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2025
ISBN 13: 9798868809644
Language: English
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condition: New. Second Edition. Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia's APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will Learn Work with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia.
Seller: Lakeside Books, Benton Harbor, MI, U.S.A.
US$ 52.39
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Published by Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2025
ISBN 13: 9798868809644
Language: English
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
US$ 64.71
Convert currencyQuantity: Over 20 available
Add to basketPaperback. Condition: New. Second Edition. Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia's APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will Learn Work with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
US$ 52.05
Convert currencyQuantity: Over 20 available
Add to basketCondition: As New. Unread book in perfect condition.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
US$ 57.14
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 75.45
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. In.
Published by Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2025
ISBN 13: 9798868809644
Language: English
Seller: Rarewaves USA United, OSWEGO, IL, U.S.A.
US$ 57.16
Convert currencyQuantity: Over 20 available
Add to basketPaperback. Condition: New. Second Edition. Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia's APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will Learn Work with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia.
Published by Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2025
ISBN 13: 9798868809644
Language: English
Seller: CitiRetail, Stevenage, United Kingdom
US$ 66.20
Convert currencyQuantity: 1 available
Add to basketPaperback. Condition: new. Paperback. Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julias APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will Learn Work with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Published by Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2025
ISBN 13: 9798868809644
Language: English
Seller: AussieBookSeller, Truganina, VIC, Australia
US$ 100.09
Convert currencyQuantity: 1 available
Add to basketPaperback. Condition: new. Paperback. Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julias APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will Learn Work with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
US$ 70.93
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. Neuware -Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia's APIs, libraries, and packages.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 384 pp. Englisch.
Published by Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2025
ISBN 13: 9798868809644
Language: English
Seller: Rarewaves.com UK, London, United Kingdom
US$ 61.23
Convert currencyQuantity: Over 20 available
Add to basketPaperback. Condition: New. Second Edition. Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia's APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will Learn Work with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia.
Seller: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Paperback. Condition: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.8.
Seller: Studibuch, Stuttgart, Germany
US$ 21.58
Convert currencyQuantity: 1 available
Add to basketpaperback. Condition: Gut. 236 Seiten; 9781484251898.3 Gewicht in Gramm: 500.
Seller: AHA-BUCH GmbH, Einbeck, Germany
US$ 68.71
Convert currencyQuantity: 1 available
Add to basketTaschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn the Julia programming language as quickly as possible. This book is a must-have reference guide that presents the essential Julia syntax in a well-organized format, updated with the latest features of Julia's APIs, libraries, and packages.This book provides an introduction that reveals basic Julia structures and syntax; discusses data types, control flow, functions, input/output, exceptions, metaprogramming, performance, and more. Additionally, you'll learn to interface Julia with other programming languages such as R for statistics or Python. At a more applied level, you will learn how to use Julia packages for data analysis, numerical optimization, symbolic computation, and machine learning, and how to present your results in dynamic documents.The Second Edition delves deeper into modules, environments, and parallelism in Julia. It covers random numbers, reproducibility in stochastic computations, and adds a section on probabilistic analysis. Finally, it provides forward-thinking introductions to AI and machine learning workflows using BetaML, including regression, classification, clustering, and more, with practical exercises and solutions for self-learners.What You Will LearnWork with Julia types and the different containers for rapid developmentUse vectorized, classical loop-based code, logical operators, and blocksExplore Julia functions: arguments, return values, polymorphism, parameters, anonymous functions, and broadcastsBuild custom structures in JuliaUse C/C++, Python or R libraries in Julia and embed Julia in other code.Optimize performance with GPU programming, profiling and more.Manage, prepare, analyse and visualise your data with DataFrames and PlotsImplement complete ML workflows with BetaML, from data coding to model evaluation, and more.Who This Book Is ForExperienced programmers who are new to Julia, as well as data scientists who want to improve their analysis or try out machine learning algorithms with Julia.