Published by Kluwer Academic Publishers, Norwell, Massachusetts, U.S.A., 1991
ISBN 10: 0792392094 ISBN 13: 9780792392095
Language: English
Seller: PsychoBabel & Skoob Books, Didcot, United Kingdom
hardcover. Condition: Very Good. Dust Jacket Condition: No Dust Jacket. Hardcover in very good condition. Boards and page block are marked. Previous owner's name penned on FEP. Pages are clean and contents are clear throughout. HCW. Used.
Condition: New. SUPER FAST SHIPPING.
Condition: New. SUPER FAST SHIPPING.
Condition: New.
Condition: New.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 127.27
Quantity: Over 20 available
Add to basketCondition: New. In.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 127.27
Quantity: Over 20 available
Add to basketCondition: New. In.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 304.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 300.
Condition: New.
Gebunden. Condition: New.
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 304 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. pp. 304.
Taschenbuch. Condition: Neu. Parallel Algorithms and Architectures for DSP Applications | Magdy A. Bayoumi | Taschenbuch | xiii | Englisch | 2012 | Humana | EAN 9781461367864 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Over the past few years, the demand for high speed Digital Signal Proces sing (DSP) has increased dramatically. New applications in real-time image processing, satellite communications, radar signal processing, pattern recogni tion, and real-time signal detection and estimation require major improvements at several levels; algorithmic, architectural, and implementation. These perfor mance requirements can be achieved by employing parallel processing at all levels. Very Large Scale Integration (VLSI) technology supports and provides a good avenue for parallelism. Parallelism offers efficient sohitions to several problems which can arise in VLSI DSP architectures such as: 1. Intermediate data communication and routing: several DSP algorithms, such as FFT, involve excessive data routing and reordering. Parallelism is an efficient mechanism to minimize the silicon cost and speed up the pro cessing time of the intermediate middle stages. 2. Complex DSP applications: the required computation is almost doubled. Parallelism will allow two similar channels processing at the same time. The communication between the two channels has to be minimized. 3. Applicatilm specific systems: this emerging approach should achieve real-time performance in a cost-effective way. 4. Testability and fault tolerance: reliability has become a required feature in most of DSP systems. To achieve such property, the involved time overhead is significant. Parallelism may be the solution to maintain ac ceptable speed performance.
Published by Springer US, Springer US, 1991
ISBN 10: 0792392094 ISBN 13: 9780792392095
Language: English
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Over the past few years, the demand for high speed Digital Signal Proces sing (DSP) has increased dramatically. New applications in real-time image processing, satellite communications, radar signal processing, pattern recogni tion, and real-time signal detection and estimation require major improvements at several levels; algorithmic, architectural, and implementation. These perfor mance requirements can be achieved by employing parallel processing at all levels. Very Large Scale Integration (VLSI) technology supports and provides a good avenue for parallelism. Parallelism offers efficient sohitions to several problems which can arise in VLSI DSP architectures such as: 1. Intermediate data communication and routing: several DSP algorithms, such as FFT, involve excessive data routing and reordering. Parallelism is an efficient mechanism to minimize the silicon cost and speed up the pro cessing time of the intermediate middle stages. 2. Complex DSP applications: the required computation is almost doubled. Parallelism will allow two similar channels processing at the same time. The communication between the two channels has to be minimized. 3. Applicatilm specific systems: this emerging approach should achieve real-time performance in a cost-effective way. 4. Testability and fault tolerance: reliability has become a required feature in most of DSP systems. To achieve such property, the involved time overhead is significant. Parallelism may be the solution to maintain ac ceptable speed performance.
Published by Springer, Springer Okt 2012, 2012
ISBN 10: 1461367867 ISBN 13: 9781461367864
Language: English
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Over the past few years, the demand for high speed Digital Signal Proces sing (DSP) has increased dramatically. New applications in real-time image processing, satellite communications, radar signal processing, pattern recogni tion, and real-time signal detection and estimation require major improvements at several levels; algorithmic, architectural, and implementation. These perfor mance requirements can be achieved by employing parallel processing at all levels. Very Large Scale Integration (VLSI) technology supports and provides a good avenue for parallelism. Parallelism offers efficient sohitions to several problems which can arise in VLSI DSP architectures such as: 1. Intermediate data communication and routing: several DSP algorithms, such as FFT, involve excessive data routing and reordering. Parallelism is an efficient mechanism to minimize the silicon cost and speed up the pro cessing time of the intermediate middle stages. 2. Complex DSP applications: the required computation is almost doubled. Parallelism will allow two similar channels processing at the same time. The communication between the two channels has to be minimized. 3. Applicatilm specific systems: this emerging approach should achieve real-time performance in a cost-effective way. 4. Testability and fault tolerance: reliability has become a required feature in most of DSP systems. To achieve such property, the involved time overhead is significant. Parallelism may be the solution to maintain ac ceptable speed performance. 300 pp. Englisch.
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
US$ 155.05
Quantity: Over 20 available
Add to basketHardback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 633.
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 300 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 300.
Seller: preigu, Osnabrück, Germany
Buch. Condition: Neu. Parallel Algorithms and Architectures for DSP Applications | Magdy A. Bayoumi | Buch | xiii | Englisch | 1991 | Springer US | EAN 9780792392095 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Published by Springer US, Springer New York Okt 2012, 2012
ISBN 10: 1461367867 ISBN 13: 9781461367864
Language: English
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Over the past few years, the demand for high speed Digital Signal Proces sing (DSP) has increased dramatically. New applications in real-time image processing, satellite communications, radar signal processing, pattern recogni tion, and real-time signal detection and estimation require major improvements at several levels; algorithmic, architectural, and implementation. These perfor mance requirements can be achieved by employing parallel processing at all levels. Very Large Scale Integration (VLSI) technology supports and provides a good avenue for parallelism. Parallelism offers efficient sohitions to several problems which can arise in VLSI DSP architectures such as: 1. Intermediate data communication and routing: several DSP algorithms, such as FFT, involve excessive data routing and reordering. Parallelism is an efficient mechanism to minimize the silicon cost and speed up the pro cessing time of the intermediate middle stages. 2. Complex DSP applications: the required computation is almost doubled. Parallelism will allow two similar channels processing at the same time. The communication between the two channels has to be minimized. 3. Applicatilm specific systems: this emerging approach should achieve real-time performance in a cost-effective way. 4. Testability and fault tolerance: reliability has become a required feature in most of DSP systems. To achieve such property, the involved time overhead is significant. Parallelism may be the solution to maintain ac ceptable speed performance.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch.
Published by Springer US, Springer US Sep 1991, 1991
ISBN 10: 0792392094 ISBN 13: 9780792392095
Language: English
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Over the past few years, the demand for high speed Digital Signal Proces sing (DSP) has increased dramatically. New applications in real-time image processing, satellite communications, radar signal processing, pattern recogni tion, and real-time signal detection and estimation require major improvements at several levels; algorithmic, architectural, and implementation. These perfor mance requirements can be achieved by employing parallel processing at all levels. Very Large Scale Integration (VLSI) technology supports and provides a good avenue for parallelism. Parallelism offers efficient sohitions to several problems which can arise in VLSI DSP architectures such as: 1. Intermediate data communication and routing: several DSP algorithms, such as FFT, involve excessive data routing and reordering. Parallelism is an efficient mechanism to minimize the silicon cost and speed up the pro cessing time of the intermediate middle stages. 2. Complex DSP applications: the required computation is almost doubled. Parallelism will allow two similar channels processing at the same time. The communication between the two channels has to be minimized. 3. Applicatilm specific systems: this emerging approach should achieve real-time performance in a cost-effective way. 4. Testability and fault tolerance: reliability has become a required feature in most of DSP systems. To achieve such property, the involved time overhead is significant. Parallelism may be the solution to maintain ac ceptable speed performance.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 302 pp. Englisch.
Published by Springer US Sep 1991, 1991
ISBN 10: 0792392094 ISBN 13: 9780792392095
Language: English
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Over the past few years, the demand for high speed Digital Signal Proces sing (DSP) has increased dramatically. New applications in real-time image processing, satellite communications, radar signal processing, pattern recogni tion, and real-time signal detection and estimation require major improvements at several levels; algorithmic, architectural, and implementation. These perfor mance requirements can be achieved by employing parallel processing at all levels. Very Large Scale Integration (VLSI) technology supports and provides a good avenue for parallelism. Parallelism offers efficient sohitions to several problems which can arise in VLSI DSP architectures such as: 1. Intermediate data communication and routing: several DSP algorithms, such as FFT, involve excessive data routing and reordering. Parallelism is an efficient mechanism to minimize the silicon cost and speed up the pro cessing time of the intermediate middle stages. 2. Complex DSP applications: the required computation is almost doubled. Parallelism will allow two similar channels processing at the same time. The communication between the two channels has to be minimized. 3. Applicatilm specific systems: this emerging approach should achieve real-time performance in a cost-effective way. 4. Testability and fault tolerance: reliability has become a required feature in most of DSP systems. To achieve such property, the involved time overhead is significant. Parallelism may be the solution to maintain ac ceptable speed performance. 302 pp. Englisch.