Condition: good. Book is in good condition and may include underlining highlighting and minimal wear. The book can also include "From the library of" labels. May not contain miscellaneous items toys, dvds, etc. . We offer 100% money back guarantee and 24 7 customer service.
Seller: ZBK Books, Carlstadt, NJ, U.S.A.
Condition: good. Fast & Free Shipping â" Good condition with a solid cover and clean pages. Shows normal signs of use such as light wear or a few marks highlighting, but overall a well-maintained copy ready to enjoy. Supplemental items like CDs or access codes may not be included.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New.
Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000.
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New.
Condition: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed.
Seller: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition.
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New.
Condition: New.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
US$ 77.36
Quantity: Over 20 available
Add to basketCondition: New.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 83.23
Quantity: Over 20 available
Add to basketCondition: New. In English.
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
US$ 87.91
Quantity: Over 20 available
Add to basketCondition: As New. Unread book in perfect condition.
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
First Edition
Paperback. Condition: new. Paperback. Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully.Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today!What You'll LearnExecute end-to-end machine learning projects and systemsImplement hands-on examples with industry standard, open source, robust machine learning tools and frameworksReview case studies depicting applications of machine learning and deep learning on diverse domains and industriesApply a wide range of machine learning models including regression, classification, and clustering.Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is ForIT professionals, analysts, developers, data scientists, engineers, graduate students Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
First Edition
Condition: New. 2017. 1st ed. Paperback. . . . . .
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New.
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. New copy - Usually dispatched within 3 working days.
Condition: NEW.
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
First Edition
Paperback. Condition: New. 1st ed. Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully.Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today!What You'll LearnExecute end-to-end machine learning projects and systemsImplement hands-on examples with industry standard, open source, robust machine learning tools and frameworksReview case studies depicting applications of machine learning and deep learning on diverse domains and industriesApply a wide range of machine learning models including regression, classification, and clustering.Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is ForIT professionals, analysts, developers, data scientists, engineers, graduate students.
Condition: New. 2017. 1st ed. Paperback. . . . . . Books ship from the US and Ireland.
Condition: New. A complete guide of theoretical, technical, and hands-on implementations for practical applications of machine learning across diverse domains in the industryShows how data science and machine learning projects are executed in t.
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 555 pages. 9.75x7.00x1.25 inches. In Stock.
Paperback. Condition: Neu. Neu Neuware, Importqualität, auf Lager - Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning.Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully.Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-worldcase studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today!What You'll LearnExecute end-to-end machine learning projects and systemsImplement hands-on examples with industry standard, open source, robust machine learning tools and frameworksReview case studies depicting applications of machine learning and deep learning on diverse domains and industriesApply a wide range of machine learning models including regression, classification, and clustering.Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is ForIT professionals, analysts, developers, data scientists, engineers, graduate students.
Published by Apress, Apress Dez 2017, 2017
ISBN 10: 1484232062 ISBN 13: 9781484232064
Language: English
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully.Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code.Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered.Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment.Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem.Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today!APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 560 pp. Englisch.
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Practical Machine Learning with Python | A Problem-Solver's Guide to Building Real-World Intelligent Systems | Dipanjan Sarkar (u. a.) | Taschenbuch | xxv | Englisch | 2017 | Apress | EAN 9781484232064 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Seller: AussieBookSeller, Truganina, VIC, Australia
First Edition
Paperback. Condition: new. Paperback. Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully.Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today!What You'll LearnExecute end-to-end machine learning projects and systemsImplement hands-on examples with industry standard, open source, robust machine learning tools and frameworksReview case studies depicting applications of machine learning and deep learning on diverse domains and industriesApply a wide range of machine learning models including regression, classification, and clustering.Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is ForIT professionals, analysts, developers, data scientists, engineers, graduate students Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Seller: Rarewaves.com UK, London, United Kingdom
First Edition
Paperback. Condition: New. 1st ed. Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully.Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today!What You'll LearnExecute end-to-end machine learning projects and systemsImplement hands-on examples with industry standard, open source, robust machine learning tools and frameworksReview case studies depicting applications of machine learning and deep learning on diverse domains and industriesApply a wide range of machine learning models including regression, classification, and clustering.Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is ForIT professionals, analysts, developers, data scientists, engineers, graduate students.