Published by Morgan and Claypool Publishers, 2008
ISBN 10: 159829590X ISBN 13: 9781598295900
Language: English
Seller: suffolkbooks, Center moriches, NY, U.S.A.
paperback. Condition: Very Good. Fast Shipping - Safe and Secure 7 days a week!
Published by Springer International Publishing AG, Cham, 2008
ISBN 10: 3031010027 ISBN 13: 9783031010026
Language: English
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING.
Condition: New.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st edition NO-PA16APR2015-KAP.
Condition: As New. Unread book in perfect condition.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 45.86
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. In.
Seller: Chiron Media, Wallingford, United Kingdom
US$ 41.31
Convert currencyQuantity: 10 available
Add to basketPF. Condition: New.
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
US$ 66.02
Convert currencyQuantity: 15 available
Add to basketCondition: New. 2008. Paperback. . . . . .
Condition: New. 2008. Paperback. . . . . . Books ship from the US and Ireland.
Published by Morgan and Claypool Publishers, Toronto, 2008
ISBN 10: 159829590X ISBN 13: 9781598295900
Language: English
Seller: Librería Maldonado, Palencia de Negrilla, SA, Spain
US$ 36.25
Convert currencyQuantity: 1 available
Add to basketRústica. Condition: Bueno. 142pp. Rústica. Morgan and Claypool Publishers, 2008, 142pp, Tapa blanda. Inglés. Ejemplar expurgado de biblioteca con tejuelo en el lomo y sellos de biblioteca.
Published by Springer International Publishing AG, Cham, 2008
ISBN 10: 3031010027 ISBN 13: 9783031010026
Language: English
Seller: AussieBookSeller, Truganina, VIC, Australia
US$ 54.37
Convert currencyQuantity: 1 available
Add to basketPaperback. Condition: new. Paperback. As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Published by Springer International Publishing, Springer Nature Switzerland Dez 2008, 2008
ISBN 10: 3031010027 ISBN 13: 9783031010026
Language: English
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
US$ 42.65
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. Neuware -As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / ConclusionsSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 144 pp. Englisch.
Published by Springer International Publishing, 2008
ISBN 10: 3031010027 ISBN 13: 9783031010026
Language: English
Seller: AHA-BUCH GmbH, Einbeck, Germany
US$ 42.65
Convert currencyQuantity: 1 available
Add to basketTaschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions.
Seller: Majestic Books, Hounslow, United Kingdom
US$ 52.34
Convert currencyQuantity: 4 available
Add to basketCondition: New. Print on Demand.
Seller: Biblios, Frankfurt am main, HESSE, Germany
US$ 58.06
Convert currencyQuantity: 4 available
Add to basketCondition: New. PRINT ON DEMAND.
Published by Springer International Publishing Dez 2008, 2008
ISBN 10: 3031010027 ISBN 13: 9783031010026
Language: English
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
US$ 42.65
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions 144 pp. Englisch.
Published by Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2008
ISBN 10: 3031010027 ISBN 13: 9783031010026
Language: English
Seller: moluna, Greven, Germany
US$ 39.50
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a.