Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
US$ 116.06
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
Published by Springer Verlag, Singapore, Singapore, 2018
ISBN 10: 981109876X ISBN 13: 9789811098765
Language: English
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics.The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations.It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the externalstress, the fluid pressure, and the stress tensor work-associated with the macroscopic strain of the solid phase are partitioned according to a relation which, from a formal point of view, turns out to be strictly compliant with Terzaghi's law, irrespective of the microstructural and constitutive features of a given medium. Moreover, it is shown that some experimental observations on saturated sandstones, generally considered as proof of deviations from Terzaghi's law, are ordinarily predicted by VMTPM. As a peculiar prediction of VMTPM, the book shows that the phenomenon of compression-induced liquefaction experimentally observed in cohesionless mixtures can be obtained as a natural implication of this theory by a purely rational deduction. A characterization of the phenomenon of crack closure in fractured media is also inferred in terms of macroscopic strain and stress paths.Altogether the results reported in this monograph exemplify the capability of VMTPM to describe and predict a large class of linear and nonlinear mechanical behaviors observed in two-phase saturated materials. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 129.97
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. In.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 134.80
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. In.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New.
Published by Springer Verlag, Singapore, Singapore, 2017
ISBN 10: 9811034516 ISBN 13: 9789811034510
Language: English
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
First Edition
Hardcover. Condition: new. Hardcover. This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics.The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations.It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the externalstress, the fluid pressure, and the stress tensor work-associated with the macroscopic strain of the solid phase are partitioned according to a relation which, from a formal point of view, turns out to be strictly compliant with Terzaghi's law, irrespective of the microstructural and constitutive features of a given medium. Moreover, it is shown that some experimental observations on saturated sandstones, generally considered as proof of deviations from Terzaghi's law, are ordinarily predicted by VMTPM. As a peculiar prediction of VMTPM, the book shows that the phenomenon of compression-induced liquefaction experimentally observed in cohesionless mixtures can be obtained as a natural implication of this theory by a purely rational deduction. A characterization of the phenomenon of crack closure in fractured media is also inferred in terms of macroscopic strain and stress paths.Altogether the results reported in this monograph exemplify the capability of VMTPM to describe and predict a large class of linear and nonlinear mechanical behaviors observed in two-phase saturated materials. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New.
Seller: Revaluation Books, Exeter, United Kingdom
US$ 178.52
Convert currencyQuantity: 2 available
Add to basketHardcover. Condition: Brand New. 9.50x6.50x0.75 inches. In Stock.
Published by Springer Verlag, Singapore, Singapore, 2018
ISBN 10: 981109876X ISBN 13: 9789811098765
Language: English
Seller: AussieBookSeller, Truganina, VIC, Australia
US$ 220.30
Convert currencyQuantity: 1 available
Add to basketPaperback. Condition: new. Paperback. This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics.The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations.It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the externalstress, the fluid pressure, and the stress tensor work-associated with the macroscopic strain of the solid phase are partitioned according to a relation which, from a formal point of view, turns out to be strictly compliant with Terzaghi's law, irrespective of the microstructural and constitutive features of a given medium. Moreover, it is shown that some experimental observations on saturated sandstones, generally considered as proof of deviations from Terzaghi's law, are ordinarily predicted by VMTPM. As a peculiar prediction of VMTPM, the book shows that the phenomenon of compression-induced liquefaction experimentally observed in cohesionless mixtures can be obtained as a natural implication of this theory by a purely rational deduction. A characterization of the phenomenon of crack closure in fractured media is also inferred in terms of macroscopic strain and stress paths.Altogether the results reported in this monograph exemplify the capability of VMTPM to describe and predict a large class of linear and nonlinear mechanical behaviors observed in two-phase saturated materials. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Published by Springer Verlag, Singapore, Singapore, 2017
ISBN 10: 9811034516 ISBN 13: 9789811034510
Language: English
Seller: AussieBookSeller, Truganina, VIC, Australia
First Edition
US$ 328.42
Convert currencyQuantity: 1 available
Add to basketHardcover. Condition: new. Hardcover. This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics.The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations.It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the externalstress, the fluid pressure, and the stress tensor work-associated with the macroscopic strain of the solid phase are partitioned according to a relation which, from a formal point of view, turns out to be strictly compliant with Terzaghi's law, irrespective of the microstructural and constitutive features of a given medium. Moreover, it is shown that some experimental observations on saturated sandstones, generally considered as proof of deviations from Terzaghi's law, are ordinarily predicted by VMTPM. As a peculiar prediction of VMTPM, the book shows that the phenomenon of compression-induced liquefaction experimentally observed in cohesionless mixtures can be obtained as a natural implication of this theory by a purely rational deduction. A characterization of the phenomenon of crack closure in fractured media is also inferred in terms of macroscopic strain and stress paths.Altogether the results reported in this monograph exemplify the capability of VMTPM to describe and predict a large class of linear and nonlinear mechanical behaviors observed in two-phase saturated materials. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Seller: Majestic Books, Hounslow, United Kingdom
US$ 144.71
Convert currencyQuantity: 4 available
Add to basketCondition: New. Print on Demand.
Seller: Biblios, Frankfurt am main, HESSE, Germany
US$ 157.42
Convert currencyQuantity: 4 available
Add to basketCondition: New. PRINT ON DEMAND.
Seller: moluna, Greven, Germany
US$ 111.25
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Collects the theoretical derivation of a variational macroscopic continuum theory together with applications to consolidation and stress partitioning problems of interest in geomechanics and biomechanicsShows that the phenomenon of compr.
Seller: moluna, Greven, Germany
US$ 111.25
Convert currencyQuantity: Over 20 available
Add to basketKartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Collects the theoretical derivation of a variational macroscopic continuum theory together with applications to consolidation and stress partitioning problems of interest in geomechanics and biomechanicsShows that the phenomenon of compr.
Seller: Biblios, Frankfurt am main, HESSE, Germany
US$ 166.13
Convert currencyQuantity: 4 available
Add to basketCondition: New. PRINT ON DEMAND.