Synopsis:
An accessible introduction to fractals, useful as a text or reference. Part I is concerned with the general theory of fractals and their geometry, covering dimensions and their methods of calculation, plus the local form of fractals and their projections and intersections. Part II contains examples of fractals drawn from a wide variety of areas of mathematics and physics, including self-similar and self-affine sets, graphs of functions, examples from number theory and pure mathematics, dynamical systems, Julia sets, random fractals and some physical applications. Also contains many diagrams and illustrative examples, includes computer drawings of fractals, and shows how to produce further drawings for themselves.
From the Back Cover:
Fractal Geometry Mathematical Foundations and Applications Kenneth Falconer, School of Mathematics, University of Bristol, UK This book provides an accessible treatment of the mathematics of fractals and their dimensions. It is aimed at those wanting to use fractals in their own areas of mathematics or science. The first part of the book covers the general theory of fractals and their geometry. Results are stated precisely, but technical measure theoretic ideas are avoided and difficult proofs are sketched or omitted. The second part contains a variety of examples and applications in mathematics and physics.
"About this title" may belong to another edition of this title.