Synopsis:
An accomplished professor of physics and mathematics unravels the complexities of superstring theory for the average reader in a lucid and entertaining account, using analogies from everyday life to explain the elegant underlying principles of the universe.
Reviews:
...[a] thoughtful and important book.... The Elegant Universe presents the ideas and aspirations--and some of the characters--of string theory with clarity and charm. It is both a personal story and the tale of a great intellectual movement.
Superstring theory may provide the long-sought unification of physics for which Einstein sought in vain. Here is a look at the current state of the quest. Greene (a professor of physics and mathematics at Columbia and Cornell) begins by pointing out the central problem of modern physics. Quantum mechanics and general relativity both work perfectly, and they cannot both be right. Relativity works for large, massive objects; quantum theory for tiny ones. Normally, the two realms can be kept separate. Yet increasingly, physics deals with phenomena such as black holes, where the conflicts are impossible to avoid. Out of the search for a more complete explanation came string theory. Its foundations were laid down some 30 years ago by Gabriele Venizano, who found that a two-century-old formula by Leonard Euler described subatomic particles more elegantly than existing theory. The relationships would make sense if elementary particles were not pointlike, but elongated and vibrating, like tiny musical stringsin one sense, a modern version of the ancient metaphor of the music of the spheres. It took a while for physicists to embrace string theory; for one thing, it seemed to predict things nobody had ever seen. And despite its formidable explanatory power, its mathematical expressions were often even more formidableGreene describes some of the equations as nearly impossible to understand, let alone solve. Still, it has the right look about it, and two waves of enthusiasm (one in the mid-1980s, the other ten years later) have convinced many physicists of the theory's probable validity. Greene deftly summarizes these findings, in areas from subatomic-particle theory to cosmology, with occasional forays into deeper waters such as the ten-dimensional structure of the universe, with several dimensions folded undetectably back into themselves. A final chapter forecasts that string theory will become the standard physical model in the next century. Entertaining and well-writtenpossibly the clearest popular treatment to date of this complex subject. -- Copyright ©1999, Kirkus Associates, LP. All rights reserved.
Greene does an admirable job of translating a wholly mathematical endeavor into visual terms. Throughout his work, he writes with poetic eloquence and style.
One of the more compelling scientific (cum-theological) questions in the Middle Ages was: "How many angels can dance on the head of a pin?" Today's version in cutting-edge science is, "How many strings... ?" As posited by s tring theory physics, strings are furiously vibrating loops of stuff. The concept of strings was devised to help scientists describe simultaneously both energy and matter. The frequency and resonance of strings' vibration, just like those of strings on an instrument, determine charge, spin and other familiar properties of energy?and eventually the structure of the universe: a true music of the spheres. There's a chance that strings are themselves made up of something still smaller. But scientists can prove their existence only on the blackboard and computer, because they are much too tiny?a hundred billion billion times smaller than the nucleus of an atom?to be observed experimentally. Brian Greene, professor of physics and mathematics at Cornell and Columbia universities, makes the terribly complex theory of strings accessible to all. He possesses a remarkable gift for using the everyday to illustrate what may be going on in dimensions beyond our feeble human perception. Just when we might be tempted to dismiss strings as grist for the publish-or-perish mill, Greene explains how they have demonstrated connections between mathematics and physics that have helped solve age-old conundrums in each field. This book will appeal to astronomy as well as math and physics fans because it probes the important insights string theory gives into hotly debated issues in cosmology. Later chapters require careful attention to Greene's explications, but the effort will prepare readers to follow the scientific advances likely to be made in the next millennium through application of string theory. Author tour.
Copyright 1999 Reed Business Information, Inc.
These days, physicists are bubbling over with talk of strings--tiny, vibrating loops of matter, seen as the building blocks of nature, that may serve to unite the divergent theories of quantum mechanics and relativity. For the rest of us, wunderkind Columbia professor Greene provides just the sort of nervy, imaginative metaphors that make understanding snap into place.
Copyright 2000 Reed Business Information, Inc.
"About this title" may belong to another edition of this title.