The solving of multi-objective problems (MOPs) has been a continuing effort by humans in many diverse areas, including computer science, engineering, economics, finance, industry, physics, chemistry, and ecology, among others. Many powerful and deterministic and stochastic techniques for solving these large dimensional optimization problems have risen out of operations research, decision science, engineering, computer science and other related disciplines. The explosion in computing power continues to arouse extraordinary interest in stochastic search algorithms that require high computational speed and very large memories. A generic stochastic approach is that of evolutionary algorithms (EA). Such algorithms have been demonstrated to be very powerful and generally applicable for solving different single objective problems. Their fundamental algorithmic structures can also be applied to solving many multi-objective problems. In this book, the various features of multi-objective evolutionary algorithms (MOEAs) are presented in an innovative and unique fashion, with detailed customized forms suggested for a variety of applications. Also, extensive MOEA discussion questions and possible research directions are presented at the end of each chapter.
For additional information and supplementary teaching materials, please visit the authors' website at http://www.cs.cinvestav.mx/~EVOCINV/bookinfo.html.
"synopsis" may belong to another edition of this title.
This textbook is the second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly augmented with contemporary knowledge and adapted for the classroom. All the various features of multi-objective evolutionary algorithms (MOEAs) are presented in an innovative and student-friendly fashion, incorporating state-of-the-art research results. The diversity of serial and parallel MOEA structures are given, evaluated and compared. The book provides detailed insight into the application of MOEA techniques to an array of practical problems. The assortment of test suites are discussed along with the variety of appropriate metrics and relevant statistical performance techniques.
Distinctive features of the new edition include:
This self-contained reference is invaluable to students, researchers and in particular to computer scientists, operational research scientists and engineers working in evolutionary computation, genetic algorithms and artificial intelligence.
"...If you still do not know this book, then, I urge you to run-don't walk-to your nearest on-line or off-line book purveyor and click, signal or otherwise buy this important addition to our literature."
-David E. Goldberg, University of Illinois at Urbana-Champaign
"About this title" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want