This book is aimed at postgraduate students in applied mathematics as well as at engineering and physics students with a ?rm background in mathem- ics. The ?rst four chapters can be used as the material for a ?rst course on inverse problems with a focus on computational and statistical aspects. On the other hand, Chapters 3 and 4, which discuss statistical and nonstati- ary inversion methods, can be used by students already having knowldege of classical inversion methods. There is rich literature, including numerous textbooks, on the classical aspects of inverse problems. From the numerical point of view, these books concentrate on problems in which the measurement errors are either very small or in which the error properties are known exactly. In real-world pr- lems, however, the errors are seldom very small and their properties in the deterministic sensearenot wellknown.For example,inclassicalliteraturethe errornorm is usuallyassumed to be a known realnumber. In reality,the error norm is a random variable whose mean might be known.
"synopsis" may belong to another edition of this title.
The book develops the statistical approach to inverse problems with an emphasis on modeling and computations. The framework is the Bayesian paradigm, where all variables are modeled as random variables, the randomness reflecting the degree of belief of their values, and the solution of the inverse problem is expressed in terms of probability densities. The book discusses in detail the construction of prior models, the measurement noise modeling and Bayesian estimation. Markov Chain Monte Carlo-methods as well as optimization methods are employed to explore the probability distributions. The results and techniques are clarified with classroom examples that are often non-trivial but easy to follow. Besides the simple examples, the book contains previously unpublished research material, where the statistical approach is developed further to treat such problems as discretization errors, and statistical model reduction. Furthermore, the techniques are then applied to a number of real world applications such as limited angle tomography, image deblurring, electrical impedance tomography and biomagnetic inverse problems. The book is intended to researchers and advanced students in applied mathematics, computational physics and engineering. The first part of the book can be used as a text book on advanced inverse problems courses.
The authors Jari Kaipio and Erkki Somersalo are Professors in the Applied Physics Department of the University of Kuopio, Finland and the Mathematics Department at the Helsinki University of Technology, Finland, respectively.
"About this title" may belong to another edition of this title.
US$ 5.50 shipping within U.S.A.
Destination, rates & speedsSeller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 360. Seller Inventory # 26284312
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 360 Illus. Seller Inventory # 7596359
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. pp. 360. Seller Inventory # 18284306
Quantity: 1 available
Seller: Florida Mountain Book Co., Datil, NM, U.S.A.
Condition: Very Good+. Hardcover, [xvi], 339 pages. Very Good+ condition. Size 9.5"x6.375". "The book develops the statistical approach to inverse problems with an emphasis on modeling and computations. The framework is the Bayesian paradigm, where all variables are modeled as random variables, the randomness reflecting the degree of belief of their values, and the solution of the inverse problem is expressed in terms of probability densities. The book discusses in detail the construction of prior models, the measurement noise modeling and Bayesian estimation. Markov Chain Monte Carlo-methods as well as optimization methods are employed to explore the probability distributions. The results and techniques are clarified with classroom examples that are often non-trivial but easy to follow. Besides the simple examples, the book contains previously unpublished research material, where the statistical approach is developed further to treat such problems as discretization errors, and statistical model reduction. Furthermore, the techniques are then applied to a number of real world applications such as limited angle tomography, image deblurring, electrical impedance tomography and biomagnetic inverse problems." Book has moderate exterior shelfwear, else Fine condition, clean and unmarked. Seller Inventory # 009890
Quantity: 1 available
Seller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-84336
Quantity: 1 available
Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-91696
Quantity: 1 available
Seller: LIBRERIA LEA+, Santiago, RM, Chile
Dura. Condition: New. Dust Jacket Condition: Nuevo. No Aplica (illustrator). 0. The book develops the statistical approach to inverse problems with an emphasis on modeling and computations. The framework is the Bayesian paradigm, where all variables are modeled as random variables, the randomness reflecting the degree of belief of their values, and the solution of the inverse problem is expressed in terms of probability densities. The book discusses in detail the construction of prior models, the measurement noise modeling and Bayesian estimation. Markov Chain Monte Carlo-methods as well as optimization methods are employed to explore the probability distributions. The results and techniques are clarified with classroom examples that are often non-trivial but easy to follow. Besides the simple examples, the book contains previously unpublished research material, where the statistical approach is developed further to treat such problems as discretization errors, and statistical model reduction. Furthermore, the techniques are then applied to a number of real world applications such as limited angle tomography, image deblurring, electrical impedance tomography and biomagnetic inverse problems. The book is intended to researchers and advanced students in applied mathematics, computational physics and engineering. The first part of the book can be used as a text book on advanced inverse problems. The authors Jari Kaipio and Erkki Somersalo are Professors in the Applied Physics Department of the University of Kuopio, Finland and the Mathematics Department at the Helsinki University of Technology, Finland, respectively. 620 gr. Libro. Seller Inventory # 9780387220734LEA45925
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2215580170840
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780387220734_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is aimed at postgraduate students in applied mathematics as well as at engineering and physics students with a rm background in mathem- ics. The rst four chapters can be used as the material for a rst course on inverse problems with a focus on computational and statistical aspects. On the other hand, Chapters 3 and 4, which discuss statistical and nonstati- ary inversion methods, can be used by students already having knowldege of classical inversion methods. There is rich literature, including numerous textbooks, on the classical aspects of inverse problems. From the numerical point of view, these books concentrate on problems in which the measurement errors are either very small or in which the error properties are known exactly. In real-world pr- lems, however, the errors are seldom very small and their properties in the deterministic sensearenot wellknown.For example,inclassicalliteraturethe errornorm is usuallyassumed to be a known realnumber. In reality,the error norm is a random variable whose mean might be known. 360 pp. Englisch. Seller Inventory # 9780387220734
Quantity: 2 available