Least-Squares Finite Element Methods (Applied Mathematical Sciences, 166) - Hardcover

Book 38 of 94: Applied Mathematical Sciences

Bochev, Pavel B.; Gunzburger, Max D.

 
9780387308883: Least-Squares Finite Element Methods (Applied Mathematical Sciences, 166)

Synopsis

Since their emergence in the early 1950s, ?nite element methods have become one of the most versatile and powerful methodologies for the approximate numerical solution of partial differential equations. At the time of their inception, ?nite e- ment methods were viewed primarily as a tool for solving problems in structural analysis. However, it did not take long to discover that ?nite element methods could be applied with equal success to problems in other engineering and scienti?c ?elds. Today, ?nite element methods are also in common use, and indeed are often the method of choice, for incompressible ?uid ?ow, heat transfer, electromagnetics, and advection-diffusion-reaction problems, just to name a few. Given the early conn- tion between ?nite element methods and problems engendered by energy minimi- tion principles, it is not surprising that the ?rst mathematical analyses of ?nite e- ment methods were given in the environment of the classical Rayleigh–Ritz setting. Yet again, using the fertile soil provided by functional analysis in Hilbert spaces, it did not take long for the rigorous analysis of ?nite element methods to be extended to many other settings. Today, ?nite element methods are unsurpassed with respect to their level of theoretical maturity.

"synopsis" may belong to another edition of this title.

From the Back Cover

The book examines theoretical and computational aspects of least-squares finite element methods(LSFEMs) for partial differential equations (PDEs) arising in key science and engineering applications. It is intended for mathematicians, scientists, and engineers interested in either or both the theory and practice associated with the numerical solution of PDEs.

The first part looks at strengths and weaknesses of classical variational principles, reviews alternative variational formulations, and offers a glimpse at the main concepts that enter into the formulation of LSFEMs. Subsequent parts introduce mathematical frameworks for LSFEMs and their analysis, apply the frameworks to concrete PDEs, and discuss computational properties of resulting LSFEMs. Also included are recent advances such as compatible LSFEMs, negative-norm LSFEMs, and LSFEMs for optimal control and design problems. Numerical examples illustrate key aspects of the theory ranging from the importance of norm-equivalence to connections between compatible LSFEMs and classical-Galerkin and mixed-Galerkin methods.

Pavel Bochev is a Distinguished Member of the Technical Staff at Sandia National Laboratories with research interests in compatible discretizations for PDEs, multiphysics problems, and scientific computing.

Max Gunzburger is Frances Eppes Professor of Scientific Computing and Mathematics at Florida State University and recipient of the W.T. and Idelia Reid Prize in Mathematics from the Society for Industrial and Applied Mathematics.

 

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9781441921604: Least-Squares Finite Element Methods (Applied Mathematical Sciences, 166)

Featured Edition

ISBN 10:  1441921605 ISBN 13:  9781441921604
Publisher: Springer, 2011
Softcover